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Grant, A., Rimoldi, B., Urbanke, R., and Whiting, P.
Rate-distortion theory for a triangular communication system--Yamamoto, H.
Extended Shannon's inequality and the asymptotic capacity of T-user binary
adder channel--Mow, W.H.

Session FRAM2 Interactive Communications and Cemputation
Coding for computing--Orlitsky, A., and Roche, J.R.

Coding for interactive communication--Schulman, L.J.

Coding for distributed computation--Rajagopalan, S., and Schulman, L.J.

Random access from compressed datasets with perfect value hashing--Miller, J.W.
Information retrieval from databases--Leung, N.K.N., Coffey, J.T., and Sechrest, S.
Information theory and noisy computation--Evans, W.S., and Schulman, L.J.
Multiple repetition feedback coding for discrete memoryless channels--Veugen, T.

Session FRAM3 Sequences for Synchronization
Extremal polyphase sequences--Golomb, S.W.
A unified construction of perfect polyphase sequences--Mow, W.H.
Asymptotic autocorrelation of Golomb sequences--Gabidulin, E.M., Fan, P.Z.,
and Darnell, M.
Perfect sequences derived from M-sequences--Darnell, M., Fan, P.Z., and Jin, F.
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and Darnell, M.
Quasi-linear synchronization codes--van Wijngaarden, A.J.
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Morita, H., van Wijngaarden, A.J., and Vinck, A.J.H.
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Gabidulin, EM.

Session FRAM4 Iterative Decoding Techniques
Codes and iterative decoding on general graphs--Wiberg, N., Loeliger, H.-A.,
and Kotter, R.
Concatenated coding system with iterated sequential inner decoding—
Jensen, O.R., and Paaske, E.
The least stringent sufficient condition on the optimality of suboptimally
decoded codewords--Kasami, T., Koumoto, T., Takata, T., Fujiwara, T.,
and Lin, S.
Implementation and performance of a serial MAP decoder for use in an iterative
turbo decoder--Pietrobon, S.S.
On the convergence of the iterated decoding algorithm--Caire, G., Taricco, G.,
and Biglieri, E.
An iterative decoding scheme for serially concatenated convolutional codes—
Siala, M., Papproth, E., Taieb, K.H., and Kaleh, GK.
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Soft-decision decoding of binary linear block codes based on an iterative search
algorithm--Moorthy, H.T., Lin, S., and Kasami, T.

A soft output decoding algorithm for concatenated systems--Wang, X.-A.,
and Wicker, S.B.
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channel--Ohtsuki, T., Sasase, 1., and Mori, S.
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and Young, J.F.
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and Moreno, O.

Binary trinomials divisible by a fixed primitive polynomial--Games, R.A.,
Key, E.L., and Rushanan, J.J.
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The binary symmetric broadcast channel with confidential messages, with
tampering--van Dijk, M.

Ideal perfect threshold schemes and MDS codes--Blakley, G.R., and Kabatianski, G.A.

Product codes and private-key encryption--Campello de Souza, J., and
Campello de Souza, R.M.
On interval linear complexity of binary sequences--Balakirsky, V.B.
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The permutation group of affine-invariant codes--Berger, T.P., and Charpin, P.

Mixed-rate multiuser codes for the T-user binary adder channel--Cooper III, A.B.,
and Hughes, B.L.

New quaternary linear codes of dimension 5--Gulliver, T.A.
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Zimmermann, K.-H.

Reed-Solomon group codes--Zain, A.A., and Rajan, B.S.

A new construction of nonlinear unequal error protection codes--Chiu, M.-C.,
and Chao, C.-C.

Linear code construction for the 2-user binary adder channel--Cabral, H.A..,
and da Rocha, V.C., Jr.

Extending Reed-Solomon codes to modules--Desmedt, Y.

Quasi-cyclic Goppa codes--Bezzateev, S.V., and Shekhunova, N.A.

New ternary linear codes—Boukliev, I.G.
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Performance and Complexity

G. David Forney, Jr.

Motorola, Inc.
20 Cabot Boulevard, Mansfield MA 02048 USA

Shannon showed that it was possible to achieve arbifrarily low error rates at any data rate less than channel capacity. By

the early Sixties, it had been realized that the real problem was how to achieve reasonable error rates with acceptable decoding
complexity at data rates anywhere near capacity. The author’s research has been primarily motivated by this problem [1]-[22].
This lecture will offer an account of some of his adventures in this pursuit, and some preliminary conclusions.

(1]
(2]
(3]
(4]
(5]

[6]
(7]
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Symbolic Dynamics and Coding Applications
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The purpose of this talk is twofold: to give an elementary
and concrete introduction to symbolic dynamics and to discuss
two applications to coding problems.

We will begin with a brief discussion of the origins of sym-
bolic dynamics going back to the work of Hadamard in 1898.
The rough idea is that symbolic dynamics provides a model
for the orbits of & classical dynamical system via a space of
sequences. Next we will introduce the basic concepts of sym-
bolic dynamics, emphasizing sliding block codes. We will sur-
vey some of the fundamental problems, solved and unsolved,
in the subject. Then we will see how work on these problems
has led to coding applications in two different settings:

1. The state splitting algorithm for constructing en-
coders/decoders adapted to input-constrained channels
such as magnetic and optical recording channels.

2. An analysis of a class of spaces with homogeneity
properties that naturally generalize convolutional codes,
group codes [3], geometrically uniform codes [2], and or-
bit systems [6].

For introductory reading on symbolic dynamics and its ap-
plications, see the monograph [1], the textbaok [4], and the
article [6](§IV). For a tutorial on the state splitting algorithm
see [5].
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Inequalities for source coding: Some are more equal than others

Jacob Ziv!
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Abstract — An important class of universal encoders
is the one where the encoder is fed with two inputs:
a) The incoming string of data to be compressed.

b) A “training sequence” that consists of the last N
data symbols that have been processed (i.e. a Sliding
Window algorithm).

We consider Fixed-to-Variable universal encoders
that noiselessly compress blocks of some fixed length
and derive universal bounds on the rate of approach
of the compression to the I-th order (per letter) en-
tropy H (Xf) or to the smaller conditional entropy
H(X{7¥|X%,,,) as a function of £ and of the length
N of the training sequence X% y,;.

We describe non-asymptotic uniform bounds on the per-
formance of data-compression algorithms in cases where the
length N of the training sequence (“history”) that is avail-
able to the encoder is not large enough so as to yield the
ultimate compression, namely the entropy of the source.
Two characteristic ultimate goals are considered: The I-th
order entropy H(X{), and the associated conditional en-
tropy H(X; *|X%441). The bounds are based on classical
information-theoretic convexity arguments. Nevertheless, it
is demonstrated that convexity arguments that work for one
case are totally useless for the other and vice versa. Fur-
thermore, these classical convexity arguments, when properly
used, lead to efficient universal data compression algorithms
for each of the two cases. For the sake of simplicity we confine
our attention to binary stationary ergodic sources.

The first case to be considered is the one where we would
like to find an upper bound on the length of a training se-
quence needed in order to guarantee that any source in the
given class will yield a compression close to its I-th order en-
tropy He, and to derive a uniform bound on the rate of ap-
proach to this entropy as a function of £ and N.

“Intuition” tells us to use the “plug-in” method: namely,
given a training sequence of length N, find the relative fre-
quency Q(X1)* of all l-vectors in it . Find the appropriate
Huffman code and use it to encode the incoming I-blocks. The
expected compression will be -Elog Q(X{). Clearly, by con-
vexity, -Elog Q(X{) > £H(X{) and eventually converges to
it. Alas, the convergence is not uniform!

Let the training sequence be denoted by X3N+1 and let:
N(X°% 41| Xf)=smallest i > 1 such that X*7* = X{ If

1This work was supported by the Technion Fund for the Promo-
tion of Research

no such i can be found, N(X%y,,1X{) = N. It then fol-
lows from Kac’s Lemma [1] that there exists a universal algo-
rithm (a variant of the LZ algorithm ) with a length function
L(X{|X%n41) which is roughly equal to logN (X% 411 X7)
when N(XEN+1|X1£) # N or to £ otherwise, such that
EL(X{| X Nny1) <LH(X])+O0(log £/£) + 8 +27%] where 6 is
some arbitrarily small positive number. This uniform bound
holds if N > 2(B+9)¢ where B satisfies: P[X{: X{ < 278 <
5.

But why be satisfied with achieving H(X{) and not try to
aim at some smaller conditional entropy where the condition-
ing is on some suffix of the training sequence X2N+1?

Our second goal is to achieve a universal compression that
1s close to H(Xf—k]ng_H) where 1 < k < £—1. It is now
assumed that a certain mixing condition is satisfied [2]. By
Kac’s lemma [1] and by convexity, (£ — k)H(X{*X%,,1)

2 Elog N(XEN+1|X£;’.€+1) kH(X2)40) 2

- n(xZk  1%2, 41)—0(1)
Elog N(X2N+1|X£k’;l)+Elog HoAn Lok

— Plog YOEna X X Ty X2y )=00)

n(X:§+1|XSk+1) is the number of occurrences of an index i;
i=k,k+1,...N such that X:li+l—i = X2k+1 (i.e. a “plug-in”
method!). Clearly, since ng_,_l is a suffix of the training se-
quence it is available to both the encoder and the decoder

where

prior to the processing of Xf_k.

Thus, the existence of a simple universal encoding algo-
rithm that can uniformly approximate the lower bound on the
conditional entropy that is derived above follows immediately.

A conditional version of the Kac’s Lemma leads to yet an-
other algorithm ( a conditional LZ variant) that applies to
all finite alphabet ergodic sources. [3]. It is demonstrated in
[3] that in a sense, this algorithm is efficient in that no other
universal data compression algorithm can do better, when the

length of the training sequence is bounded by N (for large N).
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Quantum Information Theory
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Abstract — Quantum information theory is at
the confluent of computer science and quantum
mechanics. We survey some of the most striking
recent developments in the field.

I. INTRODUCTION: THE QUBIT

Classical and quantum information are very different.
Classical information can be read, copied, and transcribed
into any medium; it can be transmitted and broadcast, but it
cannot travel faster than light. Quantum information cannot
be read or copied without disturbance, but in some instances
it appears to propagate instantaneously or even backward in
time. Together the two kinds of information can perform feats
that neither could achieve alone. For more details, references,
and appropriate credit to the many researchers who made this
work possible, please refer to my full paper in Current Trends
in Computer Science, Jan van Leeuwen (Editor), Lecture
Notes in Computer Science, Volume 1000 (special anniversary
volume), Springer—Verlag, 1995.

Quantum information theory has the potential to bring
about a spectacular revolution in computer science. Even
though current-day computers use quantum-mechanical
effects in their operation, for example through the use of tran-
sistors, they are still very much classical computing devices.
A supercomputer is not fundamentally different from a purely
mechanical computer that could be built around simple relays:
their operation can be described purely in terms of classical
physics and they can simulate one another in a straightfor-
ward manner, given sufficient storage. By contrast, com-
puters could in principle be built to profit from genuine
quantum phenomena that have no classical analogue, some-
times providing exponential speed-up compared to classical
computers. Quantum information is also at the core of other
phenomena that would be impossible to achieve in a purely
classical world, such as unconditionally secure distribution of
secret cryptographic material.

At the heart of it all is the quantum bit, or gubit. In classi-
cal information theory, a bit can take either value 0 or value 1.
According to quantum information theory, a qubit can be in
linear superposition of the two classical states, with complex
coefficients. It is best visualized as a point on the surface of
a unit sphere whose North and South poles correspond to the
classical values. (This is not at all the same as taking a value
between 0 and 1 as in classical analogue computing.) In gen-
eral, qubits cannot be measured reliably: not more than one
classical bit of information can be extracted from any given
qubit and the more information you obtain about it, the more
you disturb it irreversibly. As an example of how quantum
information differs from classical information, it is possible in
some situations to extract more than twice as much informa-
tion from two identical qubits than from either one alone.

1 Research supported in part by NSERC and FCAR.
Written while visiting the University of Wollongong, Australia.
Email: brassard@iro.umontreal.ca
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II. QuANTUM CRYPTOGRAPHY

The impossibility to measure quantum information reliably
is at the core of quantum cryptography. When information is
encoded with non-orthogonal quantum states, any attempt
from an eavesdropper to access it necessarily entails a proba-
bility of spoiling it irreversibly, which can be detected by the
legitimate users. This phenomenon can be exploited to imple-
ment a key distribution system that is provably secure even
against an eavesdropper with unlimited computing power.
Several prototypes have been built, including one that is fully
operational over 30 kilometres of ordinary optical fibre. Fur-
ther experiments are currently under way across the lake of
Geneva. Quantum techniques may also assist in the achieve-
ment of subtler cryptographic goals, such as protecting private
information while it is being used to reach public decisions.

ITII. QuaNTUM COMPUTING

Independent qubits are sufficient to produce nontrivial
cryptographic phenomena, but they are not very interesting
for computational purposes. For this, we must consider quan-
tum registers composed of n qubits. Such registers can be in
an arbitrary superposition of all 2" classical states. In prin-
ciple, a quantum computer can be programmed so that expo-
nentially many computation paths are taken simultaneously in
a single piece of hardware, a phenomenon known as quantum
parallelism. What makes this so powerful-—and mysterious—
is the exploitation of constructive and destructive interference,
which allows for the reinforcement of the probability of obtain-
ing desired results while at the same time the probability of
spurious results is reduced or even annihilated. The most fa-
mous example of quantum computation allows in principle for
the quick factorization of large integers on a quantum com-
puter, which has dramatic cryptographic significance.

IV. QuaNTUM TELEPORTATION

Even though quantum information cannot be measured in
general, it can be teleported from one place to another. It is
possible for two spatially separated qubits to be entangled, in
the sense that each of them behaves randomly when measured,
but they always give opposite results to the same measure-
ment. Let Alice and Bob share such a pair. If Alice makes
her mystery particle interact in the proper way with her share
of the pair, Bob’s share will instantaneously become a replica
of the mystery particle up to rotation; at the same time Alice’s
mystery particle loses its information but she learns which ro-
tation Bob must perform on his replica to match the original.
Imperfect stores of nonlocal qubit pairs can be purified by
local transformations and exchange of classical information.
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Wavelets: An overview, with recent applications

Ingrid Daubechies
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Wavelets have emerged in the last decade as a synthesis from many disciplines, ranging from pure mathematics (where
forerunners were used to study singular integral operators) to electrical engineering (quadrature mirror filters), borrowing in
passing from quantum physics, from geophysics and from computer aided design.

The first part of the talk will present an overview of the ideas in wavelet theory, and show how it fits into the different
disciplines in which it is rooted. The second part of the talk will discuss some recent applications, such as, in particular, a
nonlinear "squeezing’ of the wavelet transform, inspired by auditory models, with applications to speech processing; and a
discussion of nonlinear approximation and why wavelets are so succesful in nonlinear approximation.



Generalized Projections for Non-negative Functions
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Abstract — The problem of minimizing a functional
over a convex set of non-negative functions is con-
sidered, when the functional to be minimized is an
f-entropy, or f-divergence resp. Bregman distance
from a given function.

I. MOTIVATION
The motivation for this paper is the problem of inferring a
function p(z) on a set X when the only available information
is p € E, where E is a known convex set of functions on X.
Possibly a prior guess ¢ is also available, namely p(z) = q(z)
would be inferred were ¢ € E. A familiar method is to take
that p € E which minimizes a certain functional.

1I. MAXIMUM-ENTROPY TYPE METHODS
For inferring non-negative functions, it is usual to minimize
one of the functionals

Iy(p) = / fo)u, Ds(p.a) = / s, O

By(p,q) = / @) - @ - F@e—aldn, @

called f-entropy, f-divergence and Bregman distance, respec-
tively. Here f is a strictly convex differentiable function on
R, and p is a o-finite measure on X. By(p,q) is a distance in
the sense that it is non-negative and equals 0 iff p = ¢ [u].
Dy(p,q) is also a distance if f(1) = f'(1) =0.

The choice fi(t) = tlogt —t+ 1 gives the method of max-
imum entropy or ME (Jy,(p) for a probability density p is
negative Shannon entropy, and Dy, = By, is Kullback-Leibler
I-divergence). Other familiar choices are fo(t) = —logt+t+1,
leading to Burg’s method and to minimizing reversed I-
divergence, and fa(t) = [t* — at + o — 1]sign (@ — 1), & > 0.
There are strong arguments, both probabilistic and axiomatic,
that support ME, cf. [1], [3]. For axiomatic justifications of
alternative methods with some other f cf. {1], [4]. A proba-
bilistic justification of these methods can be given by an ex-
tension of ME [2] in the case when f can be represented as the
convex conjugate of the log of the moment generating func-
tion of a non-negative valued random variable. Among the
functions fo above, those with 0 < o < 1 have this property.

ITI. MAIN RESULTS
Theorem 1: Let E be a convex set of non-negative functions
such that the infimum for p € E of J;(p), Dy(p, q) or Bs(p,9q)
is finite. Then each sequence {pn} C E approaching this
infimum converges to a function p* in the sense of convergence
in measure on every set with finite p-measure, providing in the
case of Dy that either ¢ >0 [u] or

lim £'(t) = 0. 3)

1This work was supported by the Hungarian National Founda-
tion for Scientific Research, Grant 1906

Moreover, the difference of J;(p) resp. By(p,g) from its infi-
mum is lower bounded by By (p,p*), for every p € E.

Notice that here p* does not necessarily belong to E. The
minimum of the considered functional over E is attained iff
p* € E. Ii p* ¢ E, it is considered a generalized solution
of the minimization problem or (in the case of D; or B §)a
generalized projection of ¢ onto E.

Theorem 2: The statement of Theorem 1 can be strength-
ened to convergence in L;(p) norm

(a) for Jy, if p is a finite measure and (3) holds,

(b) for Dy, if ¢ € L1(p) and (3) holds,
(c) for By, if p is a finite measure, ¢ € L1(p), and

ir;fl(f'(Kv) —f'(v))>0 forsome K >1. - (4)

Corollary: Under the conditions in Theorem 2, the Li(p)
closedness of E is a sufficient condition for p* € E, i.e., for the
existence of a (unique) solution of the minimization problem.

Remark: (4) is a stronger hypothesis than (3), but for the
functions fa either holds iff & > 1. When (3) is not satisfied,
no good sufficient conditions are available for p* €E.

In most applications, the feasible set E is defined by linear
constraints,

B={p [ ax(@p(autds) = by 7ET) 5)

Then, by the above Corollary, under the hypotheses of The-
orem 2 the boundedness of the functions a is a sufficient
condition for p* € E. For the functionals (1), a somewhat
weaker sufficient condition is given in

Theorem 8: Under the hypotheses of Theorem 2 (a) or (b),
the finiteness of ff'(z\]a-,l)du or [ f*(Mayl)gdn for every
A > 0 and v €T is sufficient for p* € E. Here f * denotes the
convex conjugate of f.
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Abstract — Parallel independent channels where
no encoding is allowed for ome of the channels are
studied. The Slepian-Wolf theorem on source cod-
ing of correlated sources is used to show that any
information source whose entropy rate is below the
sum of the capacity of the coded channel and the in-
put/output mutual information of the uncoded chan-
nel is transmissible with arbitrary reliability. The
converse is also shown. Thus, coding of the side in-
formation channel is unnecessary when its mutual in-
formation is maximized by the source distribution.
An information-theoretic interpretation of Parallel-
Concatenated channel codes and, in particular, Turbo
codes is put forth.

I. MoDEL

Consider the model depicted in the Figure 1 where two inde-
pendent channels operate in parallel. If the inputs to both
channels were allowed to be encoded, then Shannon’s cod-
ing theorem tells us that the source is reliably transmissible
provided its entropy rate is below the sum C; +C5 of the chan-
nel capacities; conversely, if the source entropy rate exceeds
Cy + C; then reliable transmission is not possible. The new
twist in the model in Figure 1 is that the information going
through channel 2 is not encoded. The following practical sce-
narios which fit into this model are studied in this paper: an
existing uncoded communication link is to be upgraded with
the addition of a coded channel in order to provide reliable
transmission; the receiver obtains a noisy version of the raw
data in addition to the coded channel output; a single channel
time-multiplexed into several independent subchannels.

X0 un v &N
[ SOURCE 1—" ENCODER I—-—l CHANNEL 1 H DECODER '—-»
A
S 7y -
z"

Fig. 1: Channel with Uncoded Side Information

II. CopING THEOREM
Our main result states that the source can be transmitted reli-
ably provided that its conditional entropy rate given the output
of the uncoded channel, H(X|Z), is below the capacity C, of
channel 1, and, conversely, it cannot be transmitted reliably if
the conditional entropy rate exceeds Cj.

This result suggests that we view the information rate
of the source as split into two nonoverlapping components,
H(X) = H(X|Z) + I(X;Z). Even though the information
quantified by the second term is transmitted uncoded, the
source is reproducible with arbitrary reliability at the output.
If, furthermore, the source is matched to the uncoded channel
in the sense that it maximizes its input/output mutual in-
formation, then it is possible to transmit information at rate

C + Ca even though no coding is provided for the information
going through one of the channels. This implies that the sum
of the capacities of K independent parallel binary symmetric
channels can be achieved even if only one of them is encoded.
This observation is most striking when the encoded BSC has
very poor crossover probability.

Our coding theorem is proved under very mild conditions
on the channels and the source. The source and the out-
put of the uncoded channel are assumed to be jointly er-
godic/stationary and the coded channel is assumed to be such
that its capacity is equal to the limit of maximal mutual in-
formations.

To prove the converse part of the result we show that even
if the encoder were to observe the output of the uncoded chan-
nel, it would not be possible to send information at a faster
rate. The proof of the achievability part is by construction of
an encoder where the source coding and channel coding op-
erations are performed separately. The source encoder does
not operate at the full entropy rate of the source. Rather it
is a Slepian- Wolf encoder [1] operating at rate H(X|Z). In
the special case of binary-input memoryless channels, optimal
encoding is possible by restricting attention to linear codes.

III. PARALLEL-CONCATENATED CODES
Parallel-Concatenated codes, and in particular Turbo codes
[2], exhibit favorable complexity/performance tradeoffs. They
can be cast within the model of this paper by considering a
single-channel time-multiplexed into several independent sub-
channels. For example, one subchannel transmits the uncoded
raw data (the Turbo codes are systematic), and two parallel
channels are driven by partial encoders which can be viewed as
joint source-channel encoders driven by a redundant source.
A practically appealing way to ensure that the information en-
coded by the partial encoders is nonoverlapping is by prepend-
ing a sufficiently long interleaver at the input of one of the en-
coders. This setup is more attractive than simply multiplexing
the source because of the complexity reductions of combined
source/channel coding with high compression ratios. Good
component codes in Parallel-Concatenated schemes are able
to trade to some extent the traditional role of reducing the
uncertainty of the source given the channel outputs for the
easier goal of preserving mutual information.
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Abstract — We define zero-error list capacities for
discrete memoryless channels. We find lower bounds
As
is usual for such zero-error problems in information

to, and a characterization of, these capacities.

theory, the characterization is not generally a single-
letter one. Nonetheless, we exhibit a class of channels
for which a single letter characterization exists. We
also show how the computational cutoff rate relates
to the capacities we have defined.

I. INTRODUCTION

It is sometimes desirable that the decoder of a communi-
cation system declare not just one, but several estimates of
the transmitted data. For example, the encoder and the de-
coder may be the inner code of a more complex transmission
system, the structure of the outer code can then be used to
choose among the estimates the inner code provides. A de-
coder that may produce more than one estimate is called a
list decoder.

Suppose we are given a discrete memoryless channel (DMC)
with input alphabet X, output alphabet ) and transition
probabilities {P(y|z),y € Y, = € X}.

Let C be a block code of length n for P. A zero-error list
decoder for C is a decoder that assigns to every output y € Y™
the set of codewords L(y,C) C C that could have produced
that output with positive probability: L(y,C) = {c € C :
P™(y|c) > 0}. Let L(y,C) = |L(y,C)| be the size of the list.
The uniform distribution on C induces a distribution on L,
and we will be interested in the moments of L.

For any p > 0 and P define the zero-error P -moment list
capacity Coe(p, P) as the largest rate R such that for all € > 0
there exists a code of rate at least R for which the p** moment
of the list size is at most 1 +¢.

II. SUMMARY OF RESULTS
To state our results, we introduce
vowin o pI(Q,W) + D(V||P|Q),
woe=vQ

Fo(p, P) = max
o(p, P) ma

where () ranges over the distributions on the input alphabet
of P, D(V||P|Q) is the conditional informational divergence
and I(Q,W) is the mutual information. In the minimization
V and W range over the set of channels with the same input
and output alphabets as P, the notation V@Q = WQ means
that the distribution on the output alphabet of the channels
V and W are the same when their inputs have distribution Q,
and V <« P means that V(j]k) = 0 whenever P(j|k) =0.

Theorem 1 For all p > 0, Cor(p, P) > Folp,P)/p. More-
over, if we compute the lower bound for P™, normalize, and
pass to the limit, Cot(p, P) = limn—oo n~ Fo(p, P™)/p.

The case of p =1 is of particular interest; the correspond-
ing capacity Co¢(1, P) is called the zero-error average list size

capacity. The substitution p = 1 in Theorem 1 recovers the
results of [1].

Another special case is obtained by letting p become van-
ishingly small. The constraint on the p** moment of the list
size is then equivalent to demanding that Pr[L > 1] gets ar-
bitrarily small. Taking the limit as p — 0 in Theorem 1 we
recover the previously known lower bound for zero-undetected-
error capacity Cou [1, 2, 3].

il

As a further special case, consider the limit Co¢(00, P)
limy— e Cot(p, P).

Theorem 2 Cy(o0, P) = W%I<1<P C(W), where C(W)

maxg I(Q,W) is the ordinary capacity of a discrete memo-
ryless channel W.

We have thus seen that Co¢(0o, P) has a single letter char-
acterization. A more surprising result is that for a special
class of DMCs one can obtain a single letter expression for
Co¢(p, P) for any p > 0:

Theorem 3 Given a DMC P with input alphabet X and out-
put alphabet Y, construct the bipartite graph G(P) with ver-
tices X UY and edges {(z,y) : = € X,y € Y, P(ylz) >
0}. If G(P) is acyclic then Cos(p,P) = Eo(p, P)/p, where

Eo(p, P) = maxg = I, [32, Q@) Plyl=)/*+] ™.

The quantity Eo(p)/p is the largest rate for which the pth
moment of the number of computations per symbol remains
bounded in sequential decoding [4, 5]. Theorem 3 is similar
to the result of [6] where it is shown that for the same class
of channels the zero-undetected-error capacity Co. is identical
to the ordinary capacity C.
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Abstract — We answer the question, what should
we say about V when we want to gamble on X, and
what is it worth? If V = X, we show that every bit of
description at rate R is worth a bit of increase A(R)
in the doubling rate. Thus the efficiency A(R)/R is
equal to 1. For general V, we provide a single letter
characterization for A(R). When applied specifically
to jointly normal (V, X) with correlation p, we find the
initial efficiency AI(O) is p>. If V and X are Bernoulli
random variables connected by a binary symmetric
channel with parameter p, the initial efficiency is (1 —
2p)°.

We finally show how much increase in doubling rate
is possible when the sender can provide R bits of in-
formation about V and side information S is available
only to the investor.

SUMMARY

Suppose we are interested in gambling on the outcome of a
random variable X. The gambling comnsists of betting a pro-
portion of wealth b(z) on the outcome z. We would like to
maximize the doubling rate, which is the growth rate of wealth
when the gambler uses a fixed betting strategy on independent
realizations of X. It is well known that Kelly gambling, which
is to bet in proportion to the probability mass function of X,
is optimal.

Now suppose we allow a description of X at rate R bits
per symbol. Let A(R) be the maximum increase in the dou-
bling rate of wealth for transmission rate of R. We prove that
A(R) = R. Any bit of information one sends about X is worth
a bit of increase in the doubling rate.

We next consider the effectiveness of sending information
when side information S is available to the investor but not
to the encoder. The gambler combines this side information
with the partial description of X to form the bet.

Theorem 1 If X is described ot rate R, and side information
S is available to the gambler, then,

A(R) = R.

We ask what information should be given about a corre-
lated random variable V' if we want to help the investor gam-
ble on X. This problem shows some similarities to source
coding with side information [4, 1}. The encoder sends R bits
about V' and the investor uses this information to gamble on
X. Here maximal efficiency is not generally possible.

Theorem 2 When the encoder observes V correlated with X,

A(R) = max

] ) I(V; X).
p(vlv,z): I{(VV)XR, V=V X

1This work was supported by NSF Grant NCR-9205663, ARPA
Contract J-FBI-94-218 and JSEP Contract DAAH04-94-G-0058.

We establish certain properties of A(R) using entropy max-
imization results from Witsenhausen and Wyner [3].

Next, we find the increase in the doubling rate when the
encoder sends information at rate R about a correlated ran-
dom variable V' with side information S present only at the
investor. The investor uses these R bits together with the side
information S to invest in the outcome of X.

Theorem 3 When the encoder observes V', and side infor-
mation S is available at the investor,

A(R) = max
p(d|v,z,s): I(V;V|S)<R, V4V —(X,S)

I(V; X|S)

Finally, we investigate the efficiency of descriptions based
on correlated variables. If X and V are both Bernoulli(3) and
are associated by a binary symmetric channel with crossover
probability p, it can be shown that A(R) has a derivative of
(1 —2p)? at R = 0. Thus, even the most effective description
of V relative to the investment in X pays off at the rate of
only (1 — 2p)? bits of doubling per bit of description.

Now suppose that V' and X are jointly Gaussian with cor-
re21ation p. In this case the initial efficiency, A’ (0), is equal to
pe.
The functional form of A(R) for binary and Gaussian ran-
dom variables will be developed in [2]. Also, the relationship
between the derivative of A(R) at R = 0 and the Renyi max-
imal correlation of V' and X will be investigated.
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Abstract — In some applications, channel noise is
the sum of a Gaussian noise and a relatively weak
non-Gaussian contaminating noise. Although the ca-
pacity of such channels cannot be evaluated in general,
we analyze the decrease in capacity, or sensitivity of
the channel capacity to the weak contaminating noise.
We show that for a very large class of contaminating
noise processes, explicit expressions for the sensitivity
of a discrete-time channel capacity do exist. Sensitiv-
ity is shown to depend on the contaminating process
distribution only through its autocorrelation function
and so it coincides with the sensitivity with respect to
a Gaussian contaminating noise with the same auto-
correlation function. A key result is a formula for the
derivative of the water-filling capacity with respect to
the contaminating noise power.

Parallel results for the sensitivity of rate-distortion
function relative to a mean-square-error criterion of
almost Gaussian processes are obtained.

1. SENSITIVITY OF CHANNEL CAPACITY
Consider a discrete-time stationary channel:

Y]-—_—X5+Nj+0Z5 (1)

We assume that the random sequences X = {X;}, N = {N;}
and Z = {Z;} are second-order and mutually independent.
The nominal noise N is Gaussian, EN; = EZ; =0, EN?
0%, EZ} = 1. Denote by Cp(8) the capacity of channel 1
under the assumption that the input power is constrained to
some fixed constant P. The sensitivity of channel capacity
with respect to the contaminating noise power is defined as

S = i S0)=C20) -

6—0

1I. GAaussiAN CONTAMINATION
If the contaminating process {Z:} is Gaussian, then the
capacity of (1) admits the well-known water-filling solution

1 M2 [Ks — No(f) — 82 Z(£)]*
c@) =3 /_ S (” MolF) + P4 () )df )

where No(f) and Z(f) are the power spectral densities of the
nominal and contaminating noises, respectively, and the water
level Kp is adjusted so that the integral of the optimum input
power spectral density Ss(f) is equal to P, where So(f) is the
numerator in (3).

We show in this paper that the sensitivity of the water-
filling channel capacity formula admits the following simple

expression:
1 /1 /2
2Ko J_, /2

z2(5) 2 gy,

Se No(F)

4
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where Ko is the nominal water level. It follows that the sensi-
tivity is maximized by a contaminating random process which
concentrates its power at those frequencies where the nominal
noise spectral density is minimum. Note that the worst-case
sensitivity is minimized over the nominal noise spectral den-
sity by white noise, in which case the sensitivity is equal to

P 1 5)

= 2?2 P+o?’
regardless of the power spectral density of the contaminating
process.

S

I1I. NoNGAUSSIAN CONTAMINATION
Since Gaussian noise minimizes capacity for a given power
spectral density, the expression in (4) is an upper bound to
sensitivity for nonGaussian contamination. Despite the lack
of an expression for C(6) in the nonGaussian case, this paper
shows that
e The sensitivity is equal to (5) if the nominal Gaussian
noise is white and the contaminating noise is regular (cf.
(2])-
o The sensitivity is equal to (4) if both the nominal and
contaminating noises are regular and if the ratio of
spectral densities of contaminating to nominal noises:

Z(f)/No(f) is bounded on [0, %]

o The sensitivity is equal to 0 if the nominal noise is reg-
ular and the contaminating noise is entropy-singular.

IV. RATE-DISTORTION FUNCTION
Consider the random process N +67 and denote by Rp(8)
its rate-distortion function relative to the mean-square-error
criterion. We have shown (under the same conditions as
above) that if D < o?, then the semsitivity of the rate-
distortion function is
o Bo(0) = Ro(0) _ f” 2(f)
)
where )Xo is defined by the equation

a0, Mo (1) ¥

I - (6)

6—0

1/2
2/ min{Ao, No(f)} df = D (7)
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Abstract — A graphical calculus is presented for de-
termining the independence and conditional indepen-
dence of random variables in a specified probabilistic
setting. The calculus is developed first for the case
of random variables that form a Markov chain. The
calculus is then extended to the “general causal case”
where the random variables are obtained from a se-
quence of random experiments in which each exper-
iment can be carried out in full when the results of
specified previous experiments are made available to
it.

I. INTRODUCTION

Because mutual information is essentially a measure of
probabilistic dependence, information theory can be used to
devise a convenient calculus for reasoning about probabilistic
dependence. For example, because I(X;Y) > 0 with equality
if and only if the random variables X and Y are indepen-
dent, it follows that the determination of whether X and Y
are independent is equivalent to determining whether I(X;Y)
vanishes. Moreover, the vanishing of I(X;Y’) can alternatively
and conveniently be taken as the definition of (probabilistic)
independence. Similarly, the vanishing of the conditional mu-
tual information 7(X;Y | Z) can be taken as the definition of
the independence of X and Y when conditioned on knowledge
of Z.

Conditional independence will be seen to play an important
role in the study of probabilistic dependence. Independence
and conditional independence are in general unrelated prop-
erties of random variables in the sense that X and Y can be
independent but dependent when conditioned on Z and, con-
versely, X and Y can be dependent but independent when
conditioned on Z.

II. MarKOV CHAINS

A Markov chain can alternatively and conveniently be de-
fined as a sequence X1, Xo,... X, of random variables such
that, for all s strictly between 1 and n, [X1, X>2,... Xi—1] and
[Xit1, X142,...X5] are independent when conditioned on Xi.
An immediate consequence of the symmetry of mutual infor-
mation, ie., of the fact that I(X;Y | Z) = I(YV; X | 2), is
that the reversed sequence Xn, Xn—1,... X1 is also a Markov
chain, which is a well-known fact but one that is awkward
to prove from the usual definition of a Markov chain. An-
other immediate consequence of this alternative definition of
a Markov chain is that any subsequence of a Markov chain
X1,X,,... X, is also a Markov chain, which again is a well
known fact that is awkward to prove from the usual definition.

The following result is as useful in formulating a calculus
of dependence as it is trivial to prove.
Proposition 1 (Independence Inheritance)
FIWX;Z|Y)=0, thenalso I(X;Z |Y) =0 and I(X; Z |
WY)=0.

In other words, if some (possibly conditional) mutual informa-
tion is zero, then any random variable not in the conditioning

can be discarded or moved into the conditioning with the mu-
tual information remaining zero.

The above proposition is the basis for the following calcu-
lus of independence for Markov chains: The random variables
X1,X2,...Xn in the Markov chain are used to label in the
natural order the nodes of a simple (undirected) linear graph
with n nodes. Then any (possibly conditional) mutual infor-
mation involving only the random variables X1, X>,... Xn is
zero if, for every pair of random variables with one to the left
and one to the right of the semicolon in the mutual informa-
tion expression, there is a random variable in the conditioning
whose node in the graph lies between the nodes for these two
random variables. Moreover, this is the strongest statement
that can be made in general about the (conditional) indepen-
dence of the random variables in a Markov chain in the sense
that there are chains for which the given mutual information
is non-zero when this condition is not fulfilled. It is thus nat-
ural from the graphical viewpoint to think of conditioning
as “blocking” dependence between the random variables in a
Markov chain.

I1I. GENERAL CAUSAL SYSTEMS

The graphical calculus of independence developed for
Markov chains can be extended to apply to any random vari-
ables that can be described as the results of a sequence of
random experiments in which the results of only previous ex-
periments affect the results of following experiments, i. e., the
random variables in the sequence have a well defined defined
causal dependence. The distinction between causal depen-
dence, which is directed, and probabilistic dependence, which
is undirected, is crucial to the formulation of this extended
graphical calculus. In contrast to the Markov chain case, con-
ditioning can in general create probabilistic dependence be-
tween random variables that would be independent without
this conditioning.

The real utility of the information—theoretical calculus
for analyzing probabilistic dependence becomes evident when
considering networks of information sources, chanmnels, en-
coders and decoders. Precise definitions of all these devices to-
gether with the rules for their valid interconnection in neworks
are required for the precise formulation of the calculus. Exam-
ples will be given in the presentation of this paper to illustrate
the utility of the calculus in rather complicated networks.
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Abstract — This paper gives a simplified treatment
of, and new results on, information-theoretic lower
bounds on an opponent’s cheating probability in an
authentication system with a given key entropy.

I. INTRODUCTION

Authentication theory is concerned with providing evidence
to the receiver of a message that it was sent by a specified le-
gitimate sender, even in the presence of an opponent with un-
limited computing power who can intercept and modify mes-
sages sent by the legitimate sender or send fraudulent mes-
sages to the receiver. Authenticity (like confidentiality) can
be achieved by cryptographic coding when sender and receiver
share a secret key.

Compared to Shannon’s theory of secrecy, authentication
theory is more subtle and involved. After some purely com-
binatorial results on authentication theory had been derived
[1], Simmons [4] initiated a sequence of research activities on
information-theoretic lower bounds in authentication theory

(e.g., see [2], [3], [5), [6])-

II. DESCRIPTION OF THE AUTHENTICATION MODEL

Consider a scenario in which a sender and a receiver share
a secret key Z. The sender wants to send a sequence of mes-
sages X1, X2,...,Xn, at some independent time instances, in
an authenticated manner to the receiver. Each message X; is
authenticated separately by sending an encoded message Y;
which depends (possibly probabilistically) on Z, X;, and pos-
sibly also on the previous messages Xi,...,Xi—1. Based on
Y;, Y1,...,Y;_1 and Z the receiver decides to either reject the
message or accept it as authentic and, in case of acceptance,
decodes Y; to a message X;.

An opponent can use either of two different strategies for
cheating. In an impersonation attack at time 4, the oppo-
nent waits until he has seen the encoded messages Y1,...,Yi-1
(which he lets pass to the receiver) and then sends a fraudu-
lent message Y; which he hopes to be accepted by the receiver
as the ith message. In a substitution attack at time ¢, the
opponent lets pass messages Yi,...,Yi—1, intercepts Y; and
replaces it by a different message Y; which he hopes to be ac-
cepted by the receiver and decoded to a message different from
the one sent by the sender. There are three possible goals an
opponent might persue in either of these two attacks:

o The receiver accepts Y; as a valid message.

o The receiver accepts Y; and decodes it to a message )21
known to the opponent. In other words, an opponent is
only considered successful if he also guesses the receiv-
er’s decoded message X; correctly.

e The receiver accepts Y; and decodes it to a particular

message X; = = chosen by the opponent. Hence this
type of attack depends on a particular value z.

IThis work was supported by the Swiss National Science
Foundation.

We will denote the maximal possible probabilities of success,
for the three described scenarios, by Pr(i), Pr(i) and Pr(i,z),
respectively, for an impersonation attack at time i, and by
Ps(i), Ps(i) and Ps(i,z), respectively, for a substitution at-
tack at time 1.

ITI. INFORMATION-THEORETIC BOUNDS

The literature on information-theoretic bounds in authenti-
cation theory is quite diverse because various different models
are considered. Generally, the proofs are quite complicated
and valid only for a restricted model while the results could
actually be proven for a general model. For instance, some
proofs only hold for deterministic encoding, for single (rather
than a sequence of) messages, for a sequence of messages but
with the restrictions that the encoding rule be the same for
each message and that consecutive messages be distinct, or
that the encoding rules do not depend on previous messages.

The goal of this paper is to derive various bounds in a
coherent, more general setting, but by a simpler proof tech-
nique than those used before. In particular, we consider all
three scenarios described above and our results could be gen-
eralized to a scenario where, for the sake of a smaller cheating
probability, also a specified maximal probability of a decoding
error for a correct message can be tolerated.

Some of the derived bounds are stated below. The first two
bounds were also derived in [5] in a slightly less general form.

PrG) > 2 TZIMYioa)
Ps(G) > 2~ H(EZIM.Y)
Big) > 2 (iZIne.YioaXy)
Ps(i) > o= H(ZIY1...¥; X;)
Pi(,z) > 2 10ZMeYioXi=2)
BsG,z) > 2 HEM-YiXi=e)
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Abstract — Finding the input distribution that max-
imizes mutual information leads, not only to the ca-
pacity of the channel, but to engineering insights that
tell the designer what good codes should be like. This
is due to the folk theorem: The empirical distribution of
any good code (i.e., approaching capacity with vanishing prob-
ability of error) mazimizes mutual information. This paper
formalizes and proves this statement.

I. INTRODUCTION

The unique n-dimensional distribution that maximizes the n-
block input-output mutual information of a binary symmetric
channel (BSC) puts equal mass on all 2™ binary n-strings.
Thus, common wisdom in information theory indicates that
in order to approach the capacity of a BSC, a code must be
such that the ensemble of its equiprobable codewords appears
to be generated by a source of independent equally-likely bits.
Formalizing and proving such a statement is not trivial as evi-
denced by the fact that the entropy rate of a source of pure bits
is equal to 1 bit, whereas the entropy rate of the channel input
induced by 2™ equiprobable codewords is equal to R, and if
the probability of error is to vanish, then R < 1 — h(p) < 1.
Thus, convergence of the n-dimensional input distributions to
a Bernoulli-1/2 source is ruled out. A good deal of the intu-
ition on which the above common wisdom is grounded arises
from the consideration of the input distributions of random
coding, where not only do we average over equiprobable code-
words, but over codebooks generated randomly according to
the distribution maximizing mutual information. Then, the
averaged input distributions of a random code are trivially
equal to the capacity achieving input distributions. However,
this trivial conclusion predicts nothing about the behavior of
the input distributions of any particular code, which is the
problem of interest.

It has been shown in [1] that for any finite-input channel
that satisfies the strong converse, the output distribution in-
duced by any good code sequence converges (in normalized
divergence) to the (unique) output distribution induced by a
capacity achieving input distribution. In certain cases (such as
discrete memoryless channels with full-rank transition matri-
ces [2]), such a result implies convergence of the input statis-
tics. However, in general, such convergence does not follow
directly from the convergence of output statistics.

1I. DEFINITIONS

A. Empirical Distributions. For every codeword of a channel
code we can find its first-order empirical distribution by com-
puting the fraction of symbols in the codeword equal to each
input letter. If for a given codebook we average the empirical
distributions over equiprobable codewords we obtain the first-
order empirical distribution of the code. Analogously, x-th
order empirical distributions can be defined by computing for
each x-string v the fraction of k-strings within the codeword
equal to v. Averaging over equiprobable codewords results in

the x-th order empirical distribution of the code. Thus, for a
code composed of M codewords of blocklength =,

{zim, i=1...n, m=1,... M}, the x'"-order empirical dis-
tribution, PZ(.,, is defined as:
1 n—rx+l
Py = ———— P
X0 T TR 4 (")
=1
where

M
n 1
Pxfm)(al yoe ooy an) = _ﬁ Z l{zim = a,l} v 1{zi+n—1,m — an}
m=1

B. Good.Codes are channel codes whose rate is close to the
channel capacity and whose decoding error probability van-
ishes with blocklength. More precisely, a good code-sequence
for a channel with capacity C is a sequence of (n, M, Xn) codes

such that:
An — 0,

lim inf 16 — ¢,
n—oo
II1. Di1sSCRETE MEMORYLESS CHANNELS
We have obtained results for a variety of channels, includ-

ing channels with memory and continuous-alphabet channels.
Our main result for discrete memoryless channels (DMC) is

Theorem 1 Consider any good code sequence which does not
use any symbol having zero mass under every input distri-
bution that mazimizes the single-letter mutual information.
Then, the k-order empirical distribution of such a code se-
quence satisfies:
lim min

ID(P’-‘,c P P):O.
n—oo Ppst. I(X;¥)=C x( || Pg % X Py

where C is the channel capacity.

Note that the existence of a good code sequence satisfy-
ing the approximation property in Theorem 1 for any fixed &
is predicted by the optimality of constant-composition codes.
But, in fact, this result holds for any good code sequence be-
cause of Theorem 1. A refinement of Theorem 1 entails letting
x grow with n. We have shown that any growth faster than
log n destroys convergence.
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Abstract — In this work, for the memoryless source
with unequal probabilities of symbols generation we
derive the limiting distribution for number of phrases
in the Lempel-Ziv parsing scheme. This proves a long
standing open problem. In order to establish it we
had to solve another open problem, namely, that of
deriving the limiting distribution of the internal path
length in a digital search tree.

I. INTRODUCTION AND MAIN RESULTS

The primary motivation for this work is the desire to un-
derstand the asymptotic behavior of the fundamental parsing
algorithm on words due to Lempel and Ziv [5]. It partitions
a word into phrases (blocks) of variable sizes such that a new
block is the shortest subword not seen in the past as a phrase.
For example, the string 110010100010001000 is parsed into
(1)(10)(0)(101)(00)(01)(000)(100).

We study the distribution of the number of phrases M,
constructed from a word of a fixed length n in a probabilistic
framework. We assume that the word is generated by a prob-
abilistic memoryless binary source. That is: symbols are gen-
erated in an independent manner with ”0“ and ”1“ occurring
respectively with probabilityp andg=1—p. If p = q = 0.5,
then we call it the symmetric Bernoulli model; otherwise we
refer to the asymmetric Bernoulli model.

In order to study M,, we reduce it to another problem on
digital trees that is easier to handle. The reader is referred to
[3] for a discussion and definition of digital trees. In short: the
root of the tree is empty. All other phrases of the Lempel-Ziv
parsing algorithm are stored in nodes. When a new phrase is
created, the search starts at the root and proceeds down the
tree, that is, symbol "0“ in the input string means a move
to the left and ”1“ means a move to the right. The search is
complete when a branch is taken from an existing tree node
to a new node that has not been visited before.

Observe that for fixed n the number of nodes in the associ-
ated digital tree is random and equal to M,. We also consider
a digital tree in which the number of nodes is fixed and equal
to m, and we call such a model the digital tree model. For
fixed m, we denote by Dy(z) the length of the path from the
root to the sth node (the i¢th depth). Then, the internal path
length L,, becomes L, = Z:’;l Dn(3).

In view of the above definitions, we note that M, satis-
fies the following renewal equation M, = max{m : L, =
Z:;l Dn(i) < n} , which directly implies that Pr{M, >
m} = Pr{L, < n}. Thus one can analyze M, through L,
due to the following result of Billingsley [2]: If

L

Lm = Bm N(0,1),
Om

1)
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then
M _n/(”n/n) (2)
o 1)
where N(0,1) is the standard normal distribution, and pm
and o,, are positive constants.

Let Lm(u) = Eul™ and L(z,v) = Yo o Lm(u)z™/m! be
generating functions of L, and L (u), respectively. We can
show that L(u, z) satisfies the following differential-functional
equation for a memoryless source

0L(z,u)

dz

— N(0,1)

= L(pzu,u)L(gzu,u)

(3)

with L(z,0) = 1.

Using the above differential-functional equation and (2), we
prove the following theorem that directly extends the Aldous
and Shields [1] results who established the limiting distribu-
tion of M, only for the symmetric Bernoulli model.

Theorem . (i) For a memoryless source the following weak
convergence result holds

M, — EM,

N(0,1 4
Voardt, D “
czhsn

with EM,, ~ ifgh—n andvar M, ~ 252 where c; = (H—h?)/h®
with h = —plog p—qlog q being the entropy of the alphabet and
H = plog®p+qlog? q. Moreover, moments of M, converge to
the appropriate moments of the normal distribution. Finally,

Pr{|M, — EMy| > eEM,} < Aexp (—ae/n) (5)
for some constants A > 0 and e > 0.

Theorem above has plenty of applications in data compres-
sion (e.g., rate of convergence, etc). For example, using it
we established in [4] the limiting distribution of the phrase
length. Furthermore, using the large deviation result (5), we
can obtain information about Lemepl-Ziv code redundancy,
R,. Thatis, Pr{R, > e} = Pr{Mn(log Mn+1) > n(h+e)} <
Aexp (—as\/ﬁ) for e € h.
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Abstract — A class of multiple dictionary Lempel-
Ziv algorithms is described, where a set of context de-
pendent dictionaries are maintained, and a dictionary
chosen based on empirical performance Qata. These
algorithms are conceptually simpler than an earlier
approach based on dynamic programming(l] and are
also asymptotically optimal.

It is well known[3] that the context of a symbol (the
preceding few symbols) can be used to improve compres-
sion or prediction of the symbol. For example, the con-
text algorithm[3, 4] chooses the estimated best context
for compression via arithmetic coding. However, the most
popular techniques are based on Lempel-Ziv coding. In
LZ78, a tree structured dictionary is constructed using
the source sequence, and then used for compression. Plot-
nik, Weinberger and Ziv({2] consider a source generated by
a finite state Markov chain and show that maintaining
separate dictionaries for each state of the source machine
improves the rate of convergence of the algorithm.

In [1], a class of context dependent extensions to the
Lempel-Ziv algorithm were described, in which multiple
dictionaries were maintained, of which a subset (called
the basis set, corresponding to a complete suffix tree of
contexts) was chosen via dynamic programming to opti-
mize an estimate of the compression achievable over the
next phrase. This family of algorithms was shown to be
asymptotically optimal, and showed promise of improved
compression.

We here develop an alternative approach where the set
of contexts selected at a given time need not, as in [1], cor-
respond to a complete suffix tree. The method utilizes a
more extensive set of performance estimates, which how-
ever is available via direct empirical observations for the
proposed dictionary construction algorithms.

Associated with every context of length < D, we main-
tain a dictionary consisting of phrases seen in that context
and the empirical performance of such dictionaries. For
example, if D = 3, then, corresponding to the maximal
depth context 010, we maintain a record of the perfor-
mance of the dictionaries corresponding to context @ (the
null context), 0, 10, and 010. These D + 1 numbers are
updated each time the context is seen at the end of a
phrase (not just when the context is actually used for
compression). Compression of the next phrase is then
via the dictionary corresponding to a current best empir-

ical context. The decoder maintains the same estimates,

and therefore knows the dictionary used.

Dictionary maintenance algorithms that we consider
are closely related to those of [1]. For two of those al-
gorithms, empirical performance measures are directly

available as a consequence of the construction process.
The two algorithms are (following the names in [1]):

e Algorithm 2’- Multiple dictionaries: Separate
Lempel-Ziv trees are maintained for each possible
context of depth upto D. Phrases are added to
the corresponding dictionary every time a context is
seen by means of constructs termed tokens added to
the root of the LZ tree every time a context is seen
at the end of a phrase, and then advanced through
the tree using the subsequent symbols, ultimately
being promoted to form a new node. When this
occurs, the performance measures are updated.

e Algorithm 8-Compound dictionary: In [1], it was
suggested that it would be more efficient to view the
multiple dictionaries as subtrees of a single larger
dictionary, reached from the root via the appropri-
ate context. This makes more efficient use of stor-
age, and here too, tokens are used in the updating
procedures.

Algorithms 2 and 2’ have substantial overhead, which
may be regarded as “wasted” since many of the dictio-
naries may not be used for compression. However, in
Algorithm 3’ dictionaries not used for compression also
contribute to the growth of useful dictionaries, yielding
better performance. Both the algorithms above are as-
ymptotically optimal, as shown by the results of [1]. Ex-
perimental results on binary versions of ASCII files show
that these new methods do better than standard Lempel-
Ziv, and perform close to that of context allocation with
dynamic programming.
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Abstract — The minimum universal coding redun-
dancy for finite-state arbitrarily varying sources, is
investigated. If the space of all possible underlying
state sequences is partitioned into types, then this
minimum can be essentially lower bounded by the
sum of two terms. The first is the minimum redun-
dancy within the type class and the second is the min-
imum redundancy associated with a class of sources
that can be thought of as “representatives” of the dif-
ferent types. While the first term is attributed to the
cost of uncertainty within the type, the second term
corresponds to the type itself. The bound is achiev-
able by a Shannon code w.r.t an appropriate two-stage
mixture of all arbitrarily varying sources in the class.

We investigate the minimum attainable redundancy in uni-
versal coding for arbitrarily varying sources (AVS’s). An AVS
is a nonstationary memoryless source characterized by the
probability mass function (PMF),

P(x|s) = Hp(xilsz‘), (1)

=1
where x = (z1,...,%x) is an observed data sequence to be
encoded, z; taking on values in a finite set &, and s =
(s1,--.,8n) is an unknown arbitrary sequence of states cor-

responding to x, where each s; takes on values in a set 5. We
shall assume, for the sake of simplicity, that the parameters
of the AVS {p(z|s)}zex,ses are known.

The problem of universal coding for AVS’s has relatively re-
ceived only little attention. Berger [1, Sect. 6.1.2] and Csiszar
and Korner [2, Theorem 4.3] have characterized the best at-
tainable rate-distortion tradeoff for block-to-block (BB) codes
where the average distortion is required to be within a pre-
scribed level D for the worst possible state sequence. For the
distortionless case (D = 0) the best attainable rate in this
sense is given by the entropy of the worst memoryless source
in the convex closure of {p(:|s),s € S}, that is the maximum
entropy attained among all mixtures m(z) = fs w(ds)p(zls),
w being a probability measure on S. The reason for this worst
case result is that both the rate is held fixed at each block and
the distortion constraint must be met for every possible state
sequence.

We show that one can improve upon this pessimistic result
if variable-rate codes are allowed because then there is a po-
tential freedom to “adapt” the rate to the underlying state
sequence in some sense. Specifically, we show that for finite-
state AVS’s there exists lossless a block-to-variable (BV) code
whose compression ratio is essentially the entropy of the mem-
oryless source ms(z) = ) . ws(s)p(z|s), where ws(s) is the
empirical probability (i.e., relative frequency) of s € S along
the underlying state sequence s. This entropy is of course
never larger than the maximum entropy mentioned above. It
is therefore easy to see that the redundancy, namely, the ex-
cess rate beyond the per-letter entropy of the AVS given s, is

essentially equal to the mutual information I,g(S; X) associ-
ated with the joint PMF ws(s)p(z|s). This quantity in turn
agrees with that of [1] and [2] only if s maximizes the entropy.

Furthermore, Ig(S; X) is essentially a lower bound on the
redundancy in a fairly strong sense. If we consider the set of all
state sequences of a certain type class (i.e., the same empirical
PMF ws) and hence yield the same ms, then by a direct
application of [3, Theorem 1], for any uniquely decipherable
code that is independent of s, the redundancy is essentially
never less than Jug (S; X) for most state sequences in this type
class.

This bound is valid even if the type class in known a-priori.
But if the type class is not known in advance intuition suggests
that there must be an additional cost. We next demonstrate a
coding scheme that is optimal in the sense of yielding the min-
imum attainable extra term, which in turn can be thought of
as the redundancy associated with universal coding for a class
of auxiliary sources that are “representing” the different type
classes in a certain semse. Specifically, The proposed coding
scheme can be interpreted as an hierarchical, two-step univer-
sal code, where the first step is to construct the best universal
code within each type, and the second is to optimally inte-
grate these codes by constructing another universal code for
the class of the above mentioned auxiliary sources. The opti-
mality of the proposed hierarchical code is in the sense that
for any other code, most type classes have the property that
except for a small minority of state sequences in the type class,
the redundancy is essentially never less than the redundancy
of the proposed code.

Finally, we point out that a natural subdivision of a class
A of sources into subclasses A1, Az, ..., takes place in other
situations as well. Another example is the class of all Markov
sources, where A; is the class of ith order Markov sources. The
hierarchical universal coding approach demonstrated here, ex-
tends in the general case to a Shannon code w.r.t the double
mixture, first over each A; and then over {i}. Such a code
was called “twice universal” in [4]. Similarly to Theorem 2,
it can be shown that any other code cannot outperform the
twice universal code, for “most” points in every A;, except for
a minority of classes A;. Here by “most” we mean with high
probabilty as measured by the mixture weights.
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I. INTRODUCTION

A two-stage-procedure using the sufficient statistics of the
parameters of the source models is proposed in this paper. In
the procedure, the sufficient statistics calculated from a source
sequence is trapsmitted at first stage. At second stage, the
source sequence is encoded by using the conditional distribu-
tion given the sufficient statistics. Although the quantization
is need to transmit the estimator vector in the previous two-
stage codes [1][2], since the sufficient statistics is discrete ran-
dom variable, the quantization is not need to transmit them.
Moreover, the redundancy of the proposed code is equal to
that of Bayes code|3]]4] .

I1. THE PREVIOUS TWO-STAGE CODES

We assumed that a class of parameterized distributions of
an information source is known but the parameters of the dis-
tribution function are unknown throughout this paper. Let
x; € A be a source symbol in a finite alphabet A. A source se-
quence is denoted by z™ : z1x2- -+ z,. A parameterized distri-
bution is denoted by P(x™|@) where @ € © is a real parameter
vector in the parameter space © of the distribution.

In the coding procedures using MDL[1] or MMLJ2] crite-
rion, at the first stage, the estimator 6(z™) of the parameter 8
estimated from a source sequence =™ is encoded. At the second
stage, the source sequence is encoded by using the estimator
6(z™). The code word length Las(2™) of these procedures is
represented by

Lu(z™) = L(B(=")) — log P(z"|6 = 8(z")). (1)

The first term of the right hand side L(é(:r")) represents the
description length of the estimator vector 0( :") itself. The
second term is the ideal codeword length of a source sequence
z™ encoded by P(z"|@ = §(z™)): the distribution whose pa-
rameter is substituted by the estimator f(z™).

However, since the parameter vector is real, the quantiza-
tion of the estimator vector 6(z™) is need to transmit it. MDL
criterion was induced by considering the quantized scale of
the estimator 0(3:") to minimize the total description length
Lm(z™). MML criterion was also derived by studying encod-
ing method of the estimator using the prior distribution P(9).

ITII. SUFFICIENT STATISTICS CODE
The fundamental difference between sufficient statistics
codes and the previous two-stage codes is to transmit the suf-
ficient statistics u(z™) instead of the estimator o(z™).
The sufficient statistics u(x") satisfies the following equal-
ity.

H(Olu(z™)) = H(0]="). 2)

The above equality indicates that the sufficient statistics u(z™)
includes all information with respect to @ in a source sequence

1E-mail: toshi@matsu. mgmt.waseda.ac.jp

z". Thus, there is no information loss with respect to @ by

transmitting u(z") instead of the estimator 8(z™).

In sufficient statistics codes, at the first stage, the suffi-
cient statistics u(x™) is encoded and transmitted. At the
second stage, the source sequence z™ is encoded by using
P(z"|u(z™)): the conditional probability of z* given u(z™).

The encoding probability P(z™|u(z™)) at the second stage
essentially differs from P(z™|0 = 0(:::")) used in the pre-
vious two-stage procedures. P(x"|0 = d(z™)) is given by
substituting 6(z™) for 6 in the source distribution P(z"|0).
P(z™|0 = 6(z™)) is different from the conditional probability
P(2"|(x™)) under the condition that d(z™) is estimated from
a source sequence z". In sufficient statistics code, the condi-
tional probability P(z™|u(z™)) under the condition that the
sufficient statistics u(z™) is calculated from ", is used for the
encoding probability.

The ideal codeword length Lg(z™) of sufficient statistics
codes is given as follows:

Ls(z") = L(u(=™)) — log P(z"|u(z™)). &)

The first term of the right hand side of the above expression
L(u(z™)) represents the description length of the sufficient
statistics u(z™) in first stage of the procedure. Although the
quantization is need to transmit the estimator vector (z")
in the previous two-stage-code, since the sufficient statistics
u(z™) is discrete random variable, the quantization is not need
to transmit u(z™).

The second term is the ideal codeword length of the source
sequence z™ in the second stage. The term is uniquely deter-
mined by the conditional probability P(z™|u(x™)). Then, the
total code word length of sufficient statistics codes is depend
on the coding method of u(z™).

Theorem 1 The ideal code word length of sufficient statis-
tics code Ls(z™) is identical with that of Bayes code, if the
description length L(u(z™)) of u(z™) as follows:

L(u(z") = — log / P(u(z")|6) P(6)do. (4)

Various type of sufficient statistics codes can be constructed
by changing the prior distribution P(6) as Bayes codes. Es-
pecially, the minimax redundancy codes are constructed by
using the least favorable prior for the redundancy risk.
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Abstract — Two modifications of the Lempel-Ziv-
Welch (LZW) algorithm are presented to limit the
dictionary size. First, a run-length encoding (RLE) is
combined with the LZW algorithm, in order to pre-
select the input data. Then, a dynamic update of
the dictionary is performed by eliminating the free
branches in the tree representing the dictionary.

I. INTRODUCTION

The LZW technique is included in the V42 bis recommenda-
tion of the CCITT and it is widely used in communications.
Basically, it is a lossless and a non statistic compression al-
gorithm which maps variable length strings to fixed length
indexes (codewords). It has the advantage of being adaptive
and does not assume any advance knowledge of the source
properties. It uses a dictionary which is built by performing
a string matching after each source symbol occurrence. String
of different lengths are represented by indexes in the diction-
ary, which is the same at the encoder and decoder. During the
compression phase, the dictionary is built on the basis of the
input symbols and the coder becomes more efficient with the
growth of the table [1], {3]. However, once the dictionary is
full, no adaptivity is provided any more. In order to be able
to add a very long strings to the table, the algorithm needs a
very large dictionary, the code words become very large and
the compression ratio decreases. To counter this problem a
compromise is necessary. In fact, the compression is optim-
ised when the dictionary is a real mirror of the mput statistics.
With text or source files, long repetitive strings provide less in-
formation, and, thus, the corresponding space in the dictionary
is not efficiently used. Therefore, the algorithm must continu-
ously update the dictionary, without increasing its size. That
can be achieved by the two following schemes:

-Combining the LZW algorithm with a run length encod-
ing to avoid overloading the dictionary with long repetitive
sequences (pre-selection).

-Eliminating less probable strings from the dictionary, in
order to keep a sufficient level of adaptivity for the algorithm.

II. coMBINING LZW AND RUN-LENGTH ENCODING
The run-length encoding eliminates the repeated symbols from
the input data. The number N of repetitions must be greater
than a pre-defined threshold. It exchanges all the repetitions
in the stream of data with a special sequence. The LZW al-
gorithm can be introduced in the cascade as follows. The cre-
ation of a new string (Xi+y) in the dictionary is made by con-
catenating a unique character (y) with a string (Xi) present
in the dictionary. The run-length encoding technique scans
the input strings; if the input is a repetition of N symbols (N
greater than a pre-defined threshold), without using the dic-
tionary, the algorithm outputs a run-length encoding, to code
the repetitions. Then, the LZW-RLE coder continues normally
the coding process with the LZW algorithm. The compression
ratios achieved respectively by the LZW encoder and the RLE
are compared. According to our simulations, the threshold
value N must be greater than 10.

111, DYNAMIC UPDATE

In the LZW algorithm, the update of the dictionary stops
when the dictionary is full. For example, in the CCITT V42
bis recommendation [2], when the dictionary is full, the al-
gorithm deletes the old dictionary ( flush ) and starts build-
ing a new one. The compression ratio decreases considerably
after the dictionary flush. Instead of deleting the entire dic-
tionary, it is proposed to delete just a section, namely all the
free branches of the tree representing it. The procedure is as
follows. While building the dictionary, the algorithm marks all
the free branches, using a one row table. Once the dictionary
is full, the flush phase deletes all the branches already marked.
This technique keeps the very long strings, so that the statist-
ical properties of the input are well known and the previously
deleted branches are used to continue the update. The number
of free branches deleted in each flush phase allows us to follow
the evolution of the algorithm and estimate if it is better to
delete only a part or all the dictionary. In fact, after several
updates, the number of free branches tends to become a con-
stant value. [t corresponds to the saturation of the dictionary.
At this point, deleting all the dictionary is the best solution.

IV. RESULTS
The improvement in compression ratio, with the LZW-RLE
coder is confirmed by several tests with standard files. It
provides better performance during the learning phase with
less complexity. The improvement is around 4 to 6 percent
with respect to the LZW algorithm alone. The dynamic up-
date acts once the dictionary is full. It provides an improve-
ment of 4 percent with respect to the V42 bis method. The
flush threshold value seems to be around 1000 free branches.

V. CONCLUSION

In this paper, two modified algorithms based on combining
the run-length encoding with (LZW) and the free branches de-
leting method have been analysed and simulated. A signific-
ant compression ratio improvement is achieved with the LZW-
RLE coder, when repetition sequences are present in the file.
The LZW-RLE coder does not affect the compression ratio in
the case of normal files (files without repetitions). Application
to speech and image coding leads to further refinements which
are presently under study.
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Abstract — We study the universal coding problem
for the integers, in particular, establish rather sharp
lower and upper bounds for the Elias omega code
and other codes. For these bounds, the so-called log-
star function plays the central role. Furthermore, we
invesigate unbounded search trees induced by these
codes, including the Bentley-Yao search tree.

1. ELIAS OMEGA CODE AND RELATED CODES
Let us denote the standard binary expression of positive
integer j € N as (j)2. For example, (13); = 1101. The
binary expression of integer j to base 2* is denoted by (5)2 .
Next we express the floor function of log by A2(j) = [log, j]-
Moreover, A is the k-fold composition of function Aa.

Elias[1] introduced a universal code w : Nt — {0,1}*
called the w-code, described by
. 0 yif g =1
= —1y- . . e 1
“Us) { 5@ (a0 Lifiz2 Y

where k = k(j) is the positive integer satisfying A\5(j) = 1
(which exists for any § > 2). Then the codeword length of
this prefix code w is given by

Yo G+ =120 (2)

i1:28(4)20

ce(s) = lw(p)| =
Another class of universal codes introduced by Stout[3] is
given, for any integer d > 0, by

(§)2,40 ,if 0 < j <29,

Al (D)2, eOg7 ()2 -
(AR ())2Na(1))2(5)20 i 5 > 29,

Sa(j) =

(3)
for j e N ={0,1,...}, where

Mg (z) = [logy ] —d (z >0), (4)

/\fd] is the t-fold composition of the function Ajg, and k is the
positive integer satisfying 0 < )\f‘d] () < 24

Stout has defined the code Sy only for d > 2. S is identical
to the code introduced by Levenshtein[4].

2. BOUNDS FOR THE CODEWORD LENGTHS
In order to introduce the bound for c¢z(j), we define the log—
star function log}(z) for z > 1 as

log} (z) = log, (z) +log, log,(z) + -+ + logy " “(z)  (5)

‘where logy(z) is the k-fold composition of the function
log,(z), and w*(z) is the largest positive integer satisfying
logy (z) > 0. Therefore, w*(z) = 1,logj(z) = 0 for z = 1.

Then we established upper and lower bounds for the length
function ¢z ().
O Theorem 1 For any real £ > 1,

log3(2) < cp(2) < log (¢) + v’ ().

(6)
Here we have extended the domain of function ¢g(-) to the set
of real numbers through the extension of A;. Through a simple
consideration, we can check that the upper bound is attained
at the points j, = expj'(1) (m = 0,1,...), where exp,(z} =
2% and expi(x) is the k-hold composition of function exp,(-).
Moreover, the lower bound is also attained at the same points
in the sense of

(M

Therefore, the two bounds are best possible as far as we re-
strict the bounding functions to such smooth functions.

We can obtain same bounds for the codeword length of the
Stout code Sg by a similar argument.

Furthermore, the unbounded search trees on A/t induced
by the Elias omega code and Stout codes have a more beautiful
recursive structures than Bentley-Yao search tree[2].

Jlim cp(2) =log; (jm).

3. MODIFIED LOG—STAR FUNCTION
Define the modified log—star function by

log} o(2) = log;(z) — aw;(z) (z>1) (8)

for integer r > 2 and real number . Then, we have

0 Lemma 1 For integer r > 2, set oy = log,.(log, €).
1) If o < a7, then

Zr—los:,a(j) < 400, (9)
J=1

2) If & > a7, then
27‘105:@(1) = 4o0. (10)

=1

From the lemma, we can show the existance of better prefix
codes than Elias omega code, and other known codes.
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Abstract — The context tree weighting algorithm
was introduced at the 1993 ISIT. Here we are con-
cerned with the context tree maximizing algorithm.
We discuss several modifications of this algorithm.

I. INTRODUCTION
In this paper we assume that the source has a tree structure.
The context (e.g. the most recent symbols from the source
sequence) selects one of the leaves. Symbols following this
context are assumed to be independent. The tree structure is
called the model of the source. A full tree with depth D and
with symbol counts in its nodes and leaves is called a contert
tree. In [2] an one-pass algorithm, the context tree weighting
algorithm was introduced. This method uses such a tree.

For the context tree weighting algorithm it was proved that
the individual redundancy p of a source sequence zt, with
respect to a binary source with model & and with parameter-
vector Og satisfies (the terms represent the model, parameter
and coding redundancy respectively):

IS]

p(eT 1085, S, €s) < (2IS| = 1) + (S log

T
5]

This holds for every model & and every parametervector Ogs.

The context tree mazimizing algorithm (see also [1]), a two-
pass algorithm, fulfils the same upperbound, but at the same
time, it will give a slightly longer codeword. During the first
pass the counts in the tree will be updated. After the first pass
the two-pass algorithm will determine the “best” model, and
in the second pass it uses this model to compress the sequence.
Two-pass algorithms can have distinct advantages. Most im-
portant is that their decoding complexity is considerably less
than the complexity of the weighting algorithm.

+]S)) + 2.

II. THE CONTEXT MAXIMIZING ALGORITHM
Just like the weighting algorithm, this algorithm uses the
Krichevsky-Trofimov estimator for encoding memoryless se-
quences. This results in the following block probability for a
sequence with a zeros and b ones (if @ > 0 and b > 0) :

(a—%)%(b_%)
1.2 (atb)

1.3
Pe(a,b) = 22

In every node of the context tree we compute the maximized
probability according to the following formula. With D we
denote the maximum level of the tree, and I(s) is the depth
of the context in node s. We define

P = Pe(GSabS)
m = %max(Pe(as,bs), PPl

if i{(s) = D,
if I{s) < D.

One can find the model by walking depth-first through the
tree. If the product of the maximized probabilities of the
children is larger than the FP. in node s, then s must be an
internal node of the model, else s is a leaf. The maximizing
algorithm will find a model which minimizes the description
length (MDL). The description length is the sum of the cost
needed to describe the model (the factors ) and the cost of
describing the data with this model (Fe).

ITI. THE YOYO ALGORITHM
The maximizing algorithm can be modified such that it pro-

duces a model with not more than C leaves (parameters), to
limit the complexity of the decoder. We walk through the con-
text tree again in a depth-first search way. In every node we
compute a list which contains for all ¢ = 1, C the maximized
probability achievable with not more than c leaves. In each
node the list can be computed by combining the estimated
probability in that node with the lists from its two children.

For every total number of leaves one looks for the distribu-
tion of leaves over its two children that results in the highest
product of the maximized probabilities. Finally one finds a
list in the root with for every number of leaves up to C, the
corresponding maximized probability.

To determine the list in the root one needs at most D + 1
open lists. Once one knows the appropriate total number of
leaves, one knows which distribution of the number of leaves
over each child (of the root) resulted in this “optimal” solu-
tion. In this way the problem is reduced to two trees of depth
D — 1. If one applies this technique recursively, we will find
the best constrained model.

IV. MODEL DESCRIPTION ON-THE-FLY
Instead of sending the model description first, followed by the

code for the data, we now use a growing model. The decoder
walks through the context tree as far the current model allows.
If the new context passes an endpoint (leaf) of the current
model, which is not known to be a leaf or internal node of the
MDI: model yet, and this new context differs from the previous
ones that have passed this endpoint, then the decoder needs
more information about the model. We must first tell him that
the endpoint is a leaf or not. If not we should give him the
same information about the next node on the context path,
etc. This process ends when the current context diverges from
the previous ones. The diverging node must be included. In
this way the current model grows to the MDL-model.

In total the encoder now has to describe all internal nodes of
the found model, plus all leaves (not at the maximum depth)
which are followed by different context sequences.

With this technique we gain compared to the original two-
pass algorithm. But the model costs in the weighting algo-
rithm are similar. The maximizing algorithms can be modified
such that the best “on-the-fly models” will be found.

V. IMPROVED MODEL DESCRIPTION
In binary, but especially in non-binary trees, with on-the-fly

model description, the number of children of a node that need
specification is not known in advance. Using an estimator, e.g.
P, to specify these children, we get improved compression.
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Abstract — This paper presents a fixed-to-variable
variation of the Ziv-Lempel code called “FVLZ code”,
and clarifies its asymptotic performance with respect
to a non-probabilistic model for constrained sources
proposed by Ziv and Lempel. It is shown that the
FVLZ code has almost the same asymptotic perfor-
mance as the Ziv-Lempel code.

1. Ziv-LEMPEL CODING
In 1977, Ziv and Lempel proposed a universal coding al-

gorithm called “LZ77 code”[1]. The LZ77 coding algorithm
parses input data into a sequence of phrases with their length
less than F, each of which excluding the last symbol is the
longest matched string in a sliding window consisting of the
previously encoded N — F symbols. The phrases are rep-
resented by the position and length of the longest matched
string in the window as well as the following un-matched sym-
bol, and these triples are encoded into a codeword. Then, the
window slides to the position just before the next symbol to
be encoded.

I1. DESCRIPTION OF THE ALGORITHM

We begin with the description of the FVLZ coding al-
gorithm. Let A be a finite alphabet set with « elements,
where a > 2. Let C; be the ith FVLZ codeword which
is obtained by concatenating some intermediate codewords
c! (1 < j < E(3)) described later, ie., C; = C’}...C’iE(i).
Let d(C?) denote the length of the input data encoded into
the jth intermediate codeword C/, and let U= i:l d(c?)
where I} = 0. Assume that p indicates the number of encoded
symbols. Then, the FVLZ coding algorithm can be described
as follows:

Step 1 (Initialization) Sliding window is initialized in the
similar manner as the LZ77 coding algorithm. A
Step 2 (Encoding) Obtain the intermediate codeword C] by
using the LZ77 coding algorithm assuming that sliding win-
dow consists of the previously encoded N — F + lf symbols
and the length of longest matched string is less than F — L.
Then, the contents of C are represented with lengths spec-
ified in Table 1. If p mod F = 0, output the ith code-
word C; = CI1CE.-. C;E(i), and refresh the sliding window

by shifting F symbols to obtain the next FVLZ codeword.
Repeat Step 2 until the whole input data is encoded. O

Table 1: Lengths of intermediate-codewords

Contents to be represented
Starting position: [log(N — F + )]
Longest length: [log(F — lf )]
Last symbol (un-matched symbol): [log o}

Length

ITI. EXAMPLE
Fig.1 shows an example of the FVLZ encoding for A={a,b},

N=16 and F=8. B;(1,N) in Fig.1A denotes a string in the
sliding window used for the encoding of the ith FVLZ code-
word C; (i.e., B:(1, N) =abbbbaababbababa).

1
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IV. ANALYSIS
In this section, we clarify an asymptotic performance of the

FVLZ code and compare it with that of the LZ77 code[1]. To
this end, we employ a following model for constrained sources
which was defined by Ziv and Lempel[l]. Let A* denote the
set of all strings of finite length over A. Given a string § € A*
of length I(S) and a positive integer m < I(S), and S{m}
denotes the set of all substrings of length m contained in S.
Given a subset o of A*, and let o{m} = {S € o|l(S) = m}.
Assume that o(mn) denotes the cardinality of o{m}. Then, a
subset o of A* is called a source, if the following three prop-
erties hold: 1) A C 0, 2) S € o implies $§ € 0,3) S €0
implies §{m} C o{m}. With every source o, we associate a
sequence h(1),h(2),- - of parameters, called the h-parameters
of o, where h(m) = X log(s(m)) m =1,2,---. Let the com-
pression ratio p be

p= total length of codewords

(1

encoded source length

Now, we can state the following result.
Theorem 1 If the length of the sliding window N for a

source with known h-parameters is chosen by N = FMr
where My = (F — 1) {Zj‘n:l o™+ Zi;lH_l o(F — 1)} + F,

A= [(F —1)h(F —1)]. Then, the compression ratio p attain-
able by the FVLZ code satisfies

p < h(F —1) +e(F), (2
where £(F) = (3 + log(F — 1) + 3log F)/(F —1). 0

By using Theorem 1, we can show the universality of the
FVLZ code in the similar manner as Ziv and Lempel did for
the LZ77 code in Ref.[1]. Since &(F) of Eq.(2) is equal to that
of the LZ77 code up to the coefficient of the highest order, we
can show that the FVLZ code has almost the same asymptotic
performance as the LZ77 code has. Further, experimental re-
sults reveal that the FVLZ code and the LZ77 code provide
almost the same performance from the viewpoint of compres-
sion ratio and encoding/decoding time, as well as it requires
almost the same amount of memory as the LZ77 code.
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The sliding window of the FVLZ code:

L already encoded: Bi(1,8)« be encoded: Bi(9.16)<—]
A: a _.v:ﬂb?{blb|a|alb ..H@bla|bla...
&
to be e‘?coded:
B: .a‘b|b|blb|ala b|353
8
¢:. Output the ith codeword C =C {C%
$ The window is shifted F(=8) symbols to the right.
already encoded:B s )(1,8)«+—to be encoded: Bi;+1(9,16) <
D: .. .abbbbaab| a brb|a|b}a|b a I RN
& E : matched symbol O : un-matched symbol

Figure 1: Encoding by FVLZ code with N=16 and F=8.
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Abstract — 'This paper presents a new variation of
the Ziv-Lempel code called “Partial Decodable Ziv-
Lempel (PDLZ) code”, which can decode a part of
the encoded data from a sequence of codewords.

I. Ziv-LEMPEL CODING

In 1977, Ziv and Lempel proposed a universal coding al-
gorithm called “LZ77 code”{1]. The LZ77 coding algorithm
parses input data into a sequence of phrases with their length
less than L, each of which excluding the last symbol is the
longest matched string in a sliding window consisting of the
previously encoded N — L symbols. The phrases are repre-
sented by the position and length of the longest matched string
in the window as well as the following un-matched symbol, and
these triples are encoded into a codeword. Then, the window
slides to the position just before the next symbol to be en-
coded. Now, we define the matched relation as the relation
between the ith symbol of the longest matched string in the
sliding window and the ith symbol of the parsed phrase to be
encoded. It is noted that if a1 and ay are in matched relation,
and ag and a3 are in matched relation, then a; and a3 are also
in matched relation.

II. DESCRIPTION OF THE ALGORITHM

For each symbol in the sliding window, let a quotation sym-
bol be the oldest symbol in matched relation with the sym-
bol. Then, the quotation symbol has been encoded as an
un-matched symbol. Let the quotation set be the set of the
previously encoded K symbols. Then, the PDLZ coding algo-
rithm can be described as follows:

Step 1 (Initialization) Sliding window is initialized in the
same manner as the LZ77 coding algorithm.

Step 2 (Encoding) Obtain the next phrase to be encoded
in the same manner as the LZ77 coding algorithm. Then,
execute the following procedure:

Case 1: If the quotation symbols corresponding to the ob-
tained phrase, are all in the quotation set, then the phrase
is encoded into the ith codeword C; in the same manner
as the LZ77 coding algorithm.

Case 2: Otherwise, we divide the obtained phrase into
some substrings, such that each last symbol in the sub-
strings except for the last substring has the quotation
symbol out of the quotation set. Then, each substring is
encoded into the intermediate codeword C? j = 1,2,
in the similar manner as the LZ77 coding algorlthm, and
obtain C; by concatenating C’;’ .

Refresh the sliding window to obtain the next codeword in

the same manner as the LZ77 coding algorithm. Repeat

Step 2 until the whole input data is encoded. O
Fig.1 shows an example of the PDLZ encoding for an input
alphabet set A={a,b}, N=12, L=6 and K=6. For each sym-
bol in the sliding window, the quotation window as shown
in Fig.1(i) stores the position of the corresponding quotation
symbol in terms of the length from the next symbol to be
encoded.

le—mail: k-iwata@jaist.ac.jp

ITII. ANALYSIS
In this section, we clarify an asymptotic performance of

the PDLZ code. To this end, we employ a following model for
constrained sources which was defined by Ziv and Lempel[l].
Let A be a finite alphabet set with o elements, where o > 2,
and A* denotes the set of all strings of finite length over A.
Given a string S € A* of length I(S) and a positive integer
m < 1(9), and S{m} denotes the set of all substrings of length
m contained in S. Given a subset o of A*, and let o{m} =
{S € o|l(S) = m}. Assume that o(m) denotes the cardinality
of o{m}. Then, a subset o of A” is called a source, if the
following three properties hold: 1) A C o, 2) § € ¢ implies
§8 € 0,3) S € ogimplies S{m} C o{m}. With every source o,
we associate a sequence h(1), h(2),- - - of parameters, called the
h-parameters of o, where h(m) = L log(c(m)) m=1,2,---.
Let the compression ratio p be

total length of codewords

P = Tencoded source length (1)

Now, we can state the following result.
Theorem 1  Assume that for a source with known h-
parameters, the length of sliding window N is chosen by

A L-1
N =(L-1) {Z(L —m)a™+ Y (L=m)o(L— 1)}+L,
m=1 m=A+1
where A = [(L — 1)h(L — 1)]. Further, let K be specified by
K=(N-L™, ¢>0. (2)

Then, the compression ratio p attainable by the PDLZ code
satisfies

p <AL —1) + e (L)HL +e2(L)}, (3)
where €1 (L) = (3 + 3log(L — 1) + log(L/2))/(L — 1) and
e2(L) = 2¢/(L — 1)**LE. o

Theorem 1 implies the following corollary.

Corollary 1 If K > (N — L)*/* then the PDLZ code is a
universal code in the sense of Ziv and Lempel[l]. ]

. REFERENCES
[1] J. Ziv and A. Lempel: “A Universal Algorithm for Sequential

Data Compression”, IEEE Trans. Inform. Theory, vol. IT-23,
no.3, pp.337-343, 1977.

Sliding window:
previously encoded’—?—' 1o be encoded

[ [elalalefalafalv]ofafalbfa « « o«
" | Quotation window:_this window stores the position of the quotation symbol
L i(, stalal2ll |c0rrespond|ng to above symbol

( ala‘;ii:ig a’ali\:vi'b @Ialalb]a o o o soabbddCy

6150al3]2]1]a]3] | | | |Thisisstep2caset

- —1 43 (numbcr oi encodcd symbols)

w2 alblajai@is 'I":;?‘?C*
|6| $I4[7|6| l|4] I"I | | IThlSlQSldp‘:’—Ca.:t,y
+4 (number of encoded symbols)

aaabaaal@l |@"‘l@i“| I [J
[o] sTs[s]wf 1] [ | I [ 1]
L Iai@lhlblal@lblul L] - woc!
b»condd a b a |afb|b|alal . -]bnEi}C%

: Longest matched string O : Un-matched symbol
O : Corresponding to this symbol, the quotation symbol is out of the quotation set

Figure 1: PDLZ encoding with N=12, L=6 and K=6.

-

y

f_‘\

22




Coded Multicarrier Code Division Multiple Access
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Abstract — This paper presents a multicarrier signaling
technique for an asynchronous Direct Sequence (DS) Code
Division Multiple Access (CDMA) system which employs
linear convolutional codes to achieve frequency diversity

erformance gains in excess of path diversity gains realized
in conventional single carrier RAKE DS CDMA systems.

I. OVERVIEW

DS CDMA is a popular signaling technique in which binary data
sequences for multiple access users are modulated by unique
spreading signature sequences having bandwidth much greater than
that of the data. Waveforms are transmitted simultaneously over the
same frequency band and are distinguished at the receiver via a
correlation operation against the spreading code of the user-of-
interest. We consider a slowly varying, Rayleigh fading multipath
channel, where the spread bandwidth exceeds the coherence
bandwidth of the channel, and, thus, the signals are said to fade in a
frequency selective manner. In such systems, a RAKE receiver is
often employed to combine the energy received over several
resolvable propagation paths.

We present an alternative system where the available frequency
bandwidth is decomposed into M distinct sub-bands, each of an
bandwidth equal to the coherence bandwidth of the channel. The
sub-channels, therefore, tend to fade non-selectively, and are
assumed to fade independently. In short, we exchange path
diversity for frequency diversity, wherein forward error correction
may be utilized without the penalty of bandwidth expansion.

II. SUMMARY

The data sequence for a given user is input to a rate 1/M
convolutional encoder (where M is the number of carriers) and each
of the M outputs are multiplied by a spreading sequence which, in
turn, modulates the M carrier tones. The receiver titilizes coherent
BPSK detection and weights the outputs of each correlator in an
optimum fashion. These outputs are then used to calculate branch
metrics in a soft decision Viterbi decoder. Whereas the
conventional DS CDMA system experiences path diversity on the
order of the number of resolvable paths, the coded multicarrier DS
CDMA system experiences frequency diversity on the order of the
number of carriers plus an effective diversity improvement on the
order of the minimum free distance of the convolutional code [1].
The diversity gains realized make for significant improvements in
user capacity, while preserving the desirable properties exhibited in
DS CDMA systems: robustness to fading, tolerance to multiple
access interference, and a narrowband interference suppression
effect [2].

The performance of the coded multicarrier system is compared to
that of a conventional single carrier system in the presence of
additive white Gaussian noise, multiple access interference, and
Gaussian partial-band interference. It can be shown that the outputs
of the M sub-channel correlators are approximately conditionally
Gaussian, conditioned on the respective channel fade amplitudes
[3]. We derive the optimal correlator weights and branch metrics
for the soft decision decoder using standard methods [1].

To obtain an upper bound on the average probability of bit error,
we assume that the all-zero path is sent and consider the event that
some competing path is selected. This is accomplished by
developing a convolutional code generating function evaluated in
terms of an exponential upper bound on the probability of a

pairwise error event [1]. Since the variances of sub-channel
correlator outputs may be different, due to partial-band interference,
we consider the pairwise error event of a competing path containing
precisely d, code bit errors in the i® bit location (i.e., i sub-
channel). It can be shown that the Chernoff bound on this
probability is

dl

w1
P(dimdn)<[]| — |
= 1+’}’,-
where 7:‘ is the average signal-to-noise ratio of the i* channel. It is

then straightforward to develop a generating function for a
particular convolutional code which enumerates not just the number
of code bit errors over a path, but the location (i.e., sub-channel) of
those bit errors, whereupon the probability of bit error may be union
bounded as

P,,saT(D""’D”’N) . .
N N=1, D i=1,..M
! 1+’}’1

To analyze and compare these systems, we selected raised-cosine
chip wave-shaping filters with 50% excess bandwidth. Single
carrier RAKE system performance is taken as equivalent to that of
4* order path diversity reception using maximal-ratio combining
[1]. The multicarrier system employs 4 carriers, and thus, rate 1/4
codes of varying constraint lengths [4]. We hold total system
bandwidth, information rate, and energy-per-bit constant. The
figure below depicts the upper bound on the BER for multicarrier
systems as a function of the number of muliple access users for

E,/m, fixed at 12 (dB). At a BER of 107, significant capacity gains
are realized as an increasing function of the code constraint length.
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Abstract — The purpose of this paper is to examine
the effects of the power control technique, the cod-
ing, and the interleaving depth on the performance of
code-division multiple-access (CDMA) systems with
different chip rates and rake receivers with different
numbers of taps. We consider the implications of the
results for the support of voice and data services in a
cellular CDMA system.

Direct-sequence (DS) spread spectrum CDMA is a leading
candidate for use in mobile cellular systems and personal com-
munication systems. Important characteristics of a CDMA
system include the chip rate, the power-control technique,
the forward error-correction (FEC) code, the depth of code-
symbol interleaving, and the number of taps in the rake re-
ceiver. Though the development of emerging CDMA systems
has focused primarily on the support of voice communications,
the increasing demand for packet data services points to the
need for systems that efficiently support both voice and data
traffic.

The effect of near-far interference [1] in a cellular CDMA
system can be reduced by adapting the power of each trans-
mitter to the channel response or the interference environ-
ment. In a full-duplex voice comnection, the forward (base
station to mobile) link can serve in part as a feedback channel
for power-control commands from the base station. This is
referred to as closed-loop power control. We consider the ef-
fect of feedback delay on the performance of a CDMA system
with closed-loop power control, and the effect is examined for
several channels and for systems of different chip rates and
different numbers of taps in the rake receiver.

In contrast, data traffic on the reverse link is likely to be
bursty. In many instances, it is not practical to provide feed-
back during the transmission of a data packet. As a result, the
mobile must determine a priori the appropriate power level for
the entire packet. This is referred to as average power control.
Some compensation for rapid fading can be obtained by using
FEC coding together with interleaving as a form of time diver-
sity. We consider the effect of coding and interleaving on the
performance of a CDMA system with average power control,
and we examine its effectiveness for different channels and for
systems with different chip rates and different numbers of rake
receiver taps.

The ability of the receiver to resolve multipath components
of the received signal depends on the chip rate of the DS sig-
nal. Our channel model reflects this phenomenon and allows
for tractable analysis of receiver performance. FEach chan-
nel is a special case of the Gaussian wide-sense-stationary
uncorrelated-scattering channel, and it is described in detail

1This research was supported in part by the Holcombe Endow-
ment at Clemson University and in part by the Army Research
Office under grants DAAH04-94-G-0154 and DAAHO04-93-G-0253.
J. H. Gass is the recipient of a National Science Foundation Grad-
uate Research Fellowship.

in [2]. A closed-from expression is derived in [3] for the proba-
bility of error at the input to the decoder for a CDMA system
that employs closed-loop power control and rake reception.
The performance of the system is assumed to be limited by
multiple-access interference, and the composite interference
is modeled as additive white Gaussian noise. The result is
employed here to determine two quantities of interest — the
spectral efficiency [3] of the cell and the average signal-to-
interference ratio (SIR) that is required to achieve a target
error probability. For a given traffic mix and collection of
channels, the relationship between required SIR and spectral
efficiency varies with the chip rate, the power-control feedback
delay, the FEC code, and the interleaving depth.

In contrast to the result in [3], no closed-form expression
can be obtained for the probability of error at the outputof the
decoder. Chernoff-bound techniques can be used to evaluate
the performance of coding and finite interleaving depth, but
the bounds fail to converge for many circumstances of inter-
est in mobile communications. Thus, we employ simulations
to examine the effect of persistent fading on the performance
of CDMA systems with average power control, convolutional
coding, and interleaving. The receiver that is considered em-
ploys Viterbi decoding.

We have obtained numerical results for many circumstances
that are encountered in mobile communications. It is shown
that the performance of a CDMA system with a low chip rate
is more sensitive to channel and system parameters than is
a CDMA system with a high chip rate. The rake receiver is
necessary for adequate performance of a low-chip-rate system
under many more circumstances than for a high-chip-rate sys-
tem. The best choice of chip rate for a system with closed-loop
power control depends on the ratio of the maximum Doppler
spread to the feedback delay, and it also depends on the allow-
able number of taps. For a CDMA system employing average
power control, coding, and interleaving, a high chip rate pro-
vides performance superior to that of a low chip rate in most
circumstances.
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Successive Cancellation in Fading Multipath CDMA Channels!

MAHESH K. VARANASI
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Summary- Given an ordered J group partition of the
K simultaneously transmitting users of a CDMA channel,
a sequential group detector consists of J group detectors
that are connected sequentially. The jt* group detector
uses the decisions from the previous j — 1 group detec-
tors and cancels the inter-user interference from those
users before it makes joint decisions for the j** group.
This successive interference cancellation scheme was in-
troduced in [1] for the Gaussian CDMA channel. This
paper consists of extending that idea to the Frequency-
Selective Rayleigh Fading (FSRF) CDMA channel (de-
scribed in [2]). The two group detectors (I and II) in-
troduced in [2] for the FSRF-CDMA channel are consid-
ered as the basic building blocks. The resulting sequen-
tial group detectors can be regarded as members of two
distinct classes (each class parametrized by the ordered
partition) of multiuser detectors that satisfy a wide range
of complexity constraints. In particular, each of the two
sequential group detectors has a time complexity per sym-
bol (TCS) of O(Z;’:1 M¥5) for M-ary signalling, where
K; is the j** group size. The optimum multiuser de-
tector has a fixed TCS of O(M*). The simplest case
corresponds to the degenerate ordered partitions consist-
ing of K groups of size 1 each. For this choice, the two
sequential group detectors reduce to two distinct decor-
relating decision feedback detectors. These special cases
can be seen as two distinct generalizations (to the FSRF-
CDMA channel) of the multiuser detector by the same
name for the Gaussian channel that was proposed in [3]
and for which the analysis can be found in [1]. A succinct
indicator of the average BER over high SNR regions for
the FSRF-CDMA channel is defined via the asymptotic
efficiency in [2]. In this work, upper and lower bounds on
the asymptotic efficiency for the two sequential group de-
tectors are derived. Minimax criteria under which these
detectors are optimal are specified. The following numer-
ical example illustrates the vast improvements achievable
by the sequential group detector based on the group de-
tector II of [2] over the detector proposed in [4].

Numerical Ezample- Consider the six user direct-
sequence spread-spectrum system employing Gold se-
quences of length 31 of [2] operating in a fading multipath
environment with four paths for each user. The users
are numbered according to decreasing average power
ratios (with respect to the minimum power) given in
order as [10.0,2.5,2.0,1.5,1.25,1.0]. Suppose that the
performance of a single-user RAKE receiver for the
last (weakest) user in the hypothetical single-user sce-
nario, where all the other users are absent, is con-

LThis work was supported by NSF Grant NCR-9406069.

sidered acceptable. Equivalently, the effective SNR
(ESNR) to minimum actual SNR ratio (henceforth re-
ferred to relative ESNR) for every user has to be no
less than 1. The linear suboptimum detector of [4] re-
sults in relative ESNRs for the six users given in or-
der as [1.40,0.37,0.53,0.21,0.18,0.26]. As for sequen-
tial group detection, it turns out that the decorrelat-
ing decision-feedback detector suffices. The resulting up-
per bounds for the relative ESNRs for the six users are
[1.40,1.22,1.12,1.06,1.09, 1.0] and the lower bounds are
[1.40,1.22,1.12,1.06,1.06,1.0]. The minimum specifica-
tion is met. Moreover, note that the upper and lower
bounds coincide for all but the fifth user. Now suppose
that the power ratios are made less disparate by reduc-
ing them for the odd-numbered users so that the power
distribution for the six users is [2.5,2.5,1.5,1.5,1.0,1.0].
The relative ESNRs for the six users for the linear
suboptimum detector are [0.35, 0.37,0.39, 0.21, 0.15, 0.26].
The upper bounds for the relative ESNRs for the six
users for the decorrelating decision feedback detector are
[0.35,1.22,0.84,1.06, 0.87, 1.0] with a lower bound of 0.35
for all the users. The wide gap between the upper and
lower bounds for users 2 to 6 suggests that error propa-
gation is a severe problem inspite of the users being ar-
ranged in decreasing order of powers. However, consider
a sequential group detector with an ordered group par-
tition {1,2}{3,4}{5,6} consisting of three groups of size
two each. In this case, relative ESNRs for the six users
are equal to [1.16,1.22,1.115,1.114,1.0,1.0] (the upper
and lower bounds coincide for every user in this case).
The minimum requirement is thus met. Moreover, er-
ror propagation has little effect on the performance. The
lower complexity of the sequential group detector however
is achieved at the expense of approximately 3 dB loss for
the strongest users and nearly 1.25 dB for the users of
intermediate power relative to the optimum detector.
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Abstract — We develop an adaptive interference
suppression scheme for DS-CDMA systems in the
presence of impulsive noise. This scheme is realized
by deriving an IPA based stochastic gradient algo-
rithm that minimizes the average probability of error
for such systems. The resulting detector outperforms
the conventional matched filter detector for such sys-
tems.

I. INTRODUCTION

Recently, there has been much work done on deriving adap-
tive linear detectors for DS-CDMA systems corrupted by ad-
ditive Gaussian noise ([1] and the references within). How-
ever, such communication systems are often interfered with
by noises other than the classical white Gaussian noise, and
in here we consider DS-CDMA systems corrupted by natural
impulsive noise sources, such as those found in low-frequency
atmospheric channels, and for channels corrupted by man-
made impulsive sources such as those occurring in urban or
military radio networks. The conventional correlation receiver
has been shown to experience a degradation in performance
in impulsive noise (relative to the Gaussian noise model) even
when the user’s codes are chosen to have low cross-correlations
[2]. On the other hand, when the multiple access interference
dominates, the linear correlator in the impulsive noise channel
is not near near-far resistant (similar to the Gaussian Chan-
nel). In this paper, we develop an adaptive linear detector,
for such impulsive noise channels, which directly minimizes
the average probability of bit-error. The approach is similar
to that used in [3], where we develop an infinitesimal pertur-
bation analysis (IPA) based stochastic gradient algorithm for
achieving minimum probability of bit-error. The adaptive in-
terference rejection scheme is shown to have a very simple re-
cursive structure (thereby by allowing easy implementation),
and the conditions for convergence of this algorithm are pre-
sented.

II. SYsTEM DESCRIPTION
We will consider a K-user DS-CDMA system where the re-
ceived signal in the channel is the sum of the transmissions
due to the K users and additive channel noise. The received
signal due to the transmission of the k'™ user at any receiver
is given as

pi(t) = V2P Z biy ar(t — iT — 7¢) cos(wet + Bi),

i=—00

where b;, € {—1,+1} is the it" bit of the k" user, T is the
bit-period, Pk, ¢, and 7 are the power, carrier phase and
delay of the k** user, respectively. The carrier frequency is
denoted by wc, and ay(t) is the spreading waveform of the Eth
user. The received signal in the channel due to the K users
and additive noise is given as

K

r(t) =Y pe(t) + (),

k=1

where 7)(t) is assumed to be the additive impulsive noise that
is characterized by the first order probability density function

Fam(@) = (1 =€) falz) + efr(z),

where € € [0,1], and f. and f; are pdf’s [2]. The nominal
density function f, is usually taken to be a Gaussian density
representing the background noise. The impulsive component
of the noise is represented by f; which is taken to be more
heavily tailed than f,. The above model represents an approx-
imation to the canonical Class A interference model studied
by Middleton and Spaulding.

II1. ADAPTIVE INTERFERENCE SUPPRESSION
In [2] a conventional correlator was used for detection of the
desired user’s bits. We are interested in finding the best set
of correlation sequences h, such that the average probability
of bit-error is minimized. Following the approach in [3], we
develop an IPA based stochastic gradient algorithm that yields
the optimum linear detector for this system. Therefore, we
require the vector k" such that
L= arg{rn]in P.}. (1)
i3

We now adaptively update the vector h, using a stochastic
algorithm given as

.’L'.H = h, —’Yivl_zipe(h,‘,,ﬁ,-), (2)
where the gradient VP, is estimated using infinitesimal per-
turbation analysis, and s, is the vector of transmitted signals
for the it" iteration, i.e., the it" bit period. It is shown that
the algorithm allows a very simple recursive structure owing to
the analyticity of the ) function. The conditions for conver-
gence of the algorithm are presented as well. The performance
of the adaptive linear detector is seen to be uniformly better
than that of the linear correlator even under the extreme cases
when either the multiple access interference or the impulsive
noise is dominant.
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Error-and-Erasure Decoding of Convolutional Coded DS/SSMA
Communications in AWGN and Rayleigh Fading Channels
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Abstract — We examine the performance of convolu-
tional coded DS/SSMA communication system with
error-and-erasure decoding in AWGN and multipath
Rayleigh fading channel. The demodulator makes
a three-level-decision {-1,1,7} based on the channel
state information(CSI), where ? represents an era-
sure. The CSIs considered are the matched filter out-
put and the fading amplitude. The optimum decision
threshold that minimizes BER is found to be almost
equal to the threshold that maximizes the channel
cut-off rate Ry. A simple parallel decision scheme is
proposed to give a performance which is very close
to the optimum decision scheme. The performance
improvement made by using the CSI is investigated.

I. INTRODUCTION

It is well known that soft decision decoding requires 2-3dB
less in signal-to-noise ratio over the hard decision decoding
in AWGN channels [1]. However, soft decision decoding re-
quires real arithmetic operations, which are much more com-
plex than binary operations involved in hard decision decod-
ing. Clark and Cain has pointed out that erasing unreliable
symbols based on channel state information (CSI) and per-
forming error-and-erasure decoding is an effective method to
provide a good trade off between system performance and
implementation complexity[2]. In this paper we analyze the
performance of convolutional coded DS/SSMA communica-
tion systems employing error-and-erasure decoding and binary
PSK modulation with several demodulation schemes.

II. DEMODULATION SCHEMES

We consider several demodulation schemes that make a
three-level-decision {-1,1,?} based on the CSI. In AWGN chan-
nel, we use the matched filter output as a CSI, which is most
convenient, useful, and easy to get. If the absolute value of the
matched filter output is larger than a threshold, the demodula-
tor makes a decision {-1,1} based on the matched filter output,
otherwise the demodulator erases the corresponding symbol.
In multipath Rayleigh fading channel we use the matched fil-
ter output and/or the fading amplitude as a CSI. For the case
of demodulator using only the fading amplitude, we consider
a demodulator that makes a hard decision if the fading ampli-
tude is larger than a threshold, otherwise erases the symbol.
We assume the fading amplitude information is available at
the demodulator. We also consider a demodulator that uses
both the matched filter output and the fading amplitude. In
this case if the fading amplitude is below a threshold(€2.) or
the matched filter output is below a threshold(£2), the de-
modulator erases the symbol, otherwise makes a hard decision
based on the matched filter output.
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Fig. 1: BER vs. Ey/Np : code rate = 1/2, constraint length =
7, convolutional code, number of user = 30, 128 chips/coded bit,
Rayleigh fading channel(c? = 1/2)

ITI. D1scussIoNs
We have investigated the optimum erasure threshold that

minimizes BER. It is found that the erasure threshold that
maximizes the channel cut-off rate Ry is almost optimal and
the optimum erasure threshold increases as the traffic in-
creases. Based on this observation, we propose a simple paral-
lel decision scheme that changes the erasure threshold accord-
ing to the channel traffic. We found that the parallel scheme
yields a performance close to that with the optimum decision
scheme. We have also examined how much the performance
improvement can be made by using the CSIs in Rayleigh fad-
ing channel. Fig.1 shows the BERs with different CSIs. We
can see that the erasure based on the fading amplitude in-
formation alone gives a higher BER than with matched filter
output alone. However, when the fading amplitude informa-
tion is combined with the matched filter output, the fading
amplitude information gives a gain of 1.0-2.5dB in Ey/Ny at
the BER of 1072, and even a higher gain can be obtained for
lower BER.
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Abstract — The performance is evaluated for a
bypothetical CDMA digital cellular telephone system
whose reverse link uses w/4-DQPSK modulation and
equal gain RAKE diversity combining. The results are
shown numerically in comparison with those for
Qualcomm’s (IS-95) CDMA cellular system, which uses
64-ary orthogonal modulation on the reverse link.

INTRODUCTION

The mobile-to-base (reverse) link of the North Ameri-
can IS-95 DS-CDMA cellular system employs an M-ary
orthogonal modulation using Walsh-Hadamard se-
quences with QPSK phase coding with M =64. For
lack of the carrier phase reference-providing pilot
signals, which are used for the forward (base-to-mobile)
links, the system employs noncoherent demodulation
for the reverse links for each of the L-path diversity
receptions in its RAKE system.

In this paper we suggest and investigate an
alternative scheme for the reverse link modulation and
multipath receptions: the information sequence is to be
7/4 — DQPSK modulated after inserting the DS-CDMA
spreading sequence in the I and Q channels prior to the
pulse shaping and summation, and the demodulation is
done with partially coherent differential detection for
each multipath component before diversity combining.

We show a closed form error probability expression
for the m/4 — DQPSK reverse link with L independent
multipath diversity receptions in Rayleigh fading and
CDMA interference. The results are evaluated with
capacity and processing gain values as parameters. The
exact closed form expression for the performance of the
system is based on the authors’ previous work [1].

SUMMARY OF ANALYTICAL RESULTS

Resolution of multipath signal components separated
in time delay by more than the chip period of the DS-
CDMA SS sequence is possible, and the paths can be
combined to provide diversity. The unconditional prob-
ability of error for the reception of one of L fading
multipath components is found to be

a1y prcos (n/4)
P9 2{ \lop cos (/4> +3+ oy,

1)

where A
L —

2

Ey/LNg
1+(Eb/NO)'P_GM“CF!‘?S

and where M is the number of multiple access users,
PG is the spread spectrum processing gain, F' is the
frequency re-use factor, d is a voice activity factor, and
G, is the sector antenna gain.

For a receiver combining the L > 1 paths, assuming
independent fading in the multiple paths, the prob-
ability of error can be shown to be

Pr(e) =[py(e)]"- E(L O —-pef.  ®

The values of d, M, F, PG, and G, determining the
amount of interference can be traded off to achieve the
desired system performance. The corresponding error-
expression for the diversity combining of M-ary

orthogonal signals is [2]
2 g
(14n+np)*

P(e) = M/2
n(L-1) k
S me ) () o

M-1 I‘(L)
in which the value of B;(n) is the coefficient of ¥ in

the expansion n(L-1)

L-1 "

k=0 k=0

It is found that, in the fading environment, the pro-
posed reverse link modulation, which is less complex
than the IS-95 64-ary orthogonal modulation, actually
outperforms the latter when L < 2 paths are combined.
We consider examples of capacity and processing gain,
and implications for the error correcting codes needed
for meeting operational requirements for voice or data.
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Abstract — In this paper, the average interference
parameter (AIP) of polyphase code-sequences in DS-
CDMA systems is investigated. The expected value
and the variance of the AIP for randomly chosen
cyclic shifts of the code-sequences are derived.

I. INTRODUCTION

The performance of direct-sequence code-division multiple-
access (DS-CDMA) systems depends on the correlation prop-
erties of the used code-sequences. The most common criteria
to describe the correlation behavior are the periodic peak cor-
relation parameter, describing the worst-case behavior, and
thé average interference parameter (AIP) on which the signal-
to-noise ratio depends. Usually, families of code-sequences for
these systems are constructed considering the periodic peak
correlation parameter. In a second step, cyclic shifts of these
sequences which result in an optimum AIP are sought. (The
periodic peak correlation parameter remains unchanged if the
sequences are cyclically shifted.) Since not all combinations of
shifts can be examined, simplified search methods, e.g. based
on the sidelobe energy, are applied. To compare the perfor-
mance of these techniques and to derive bounds on the achiev-
able AIP, the expected value and the variance of the AIP for
randomly chosen shifts are needed. For this reason, these val-
ues will be derived for some of the most important families of
code-sequences.

II. INVESTIGATED FAMILIES

We consider families 7 = {Si(n) | 1 < k < K} consisting
of K sequences of length N (0 < n < N —1). The elements
of the sequences are roots of unity. The aperiodic correlation
function is defined by Cggr(m) Z::O]—m S§*(n)R(n + m)
(m > 0) and the periodic correlation function by Csr(m) =
E:’____ol $*(n)R(n + m mod N). The maximum magnitude of
the periodic crosscorrelation values and the autocorrelation
sidelobes is the periodic peak correlation parameter §.

Three types of large families of code-sequences have
been investigated: Prime-phase code-sequences (e.g. Gold-,
Kasami-, and Kumar-Moreno-families) are constructed in the
Galois-field GF(p") using an additive character [1]. Because
of their practical importance, quadriphase code-sequences and
other prime-power-phase sequences are considered. The con-
struction of these sequences in Galois-rings GR(p*,r) is de-
scribed in [2]. The third family is constructed by multiplying
all sequences of families of type 1 or 2 with exp(j2nkn/N)
with s =0..N —1.

II1. INTERFERENCE PARAMETERS
We consider an asynchronous phase shift keying DS-CDMA
system for K users. The signal-to-noise ratio of these systems
can be expressed in terms of the total interference parameter
TIP [3] which is defined as (at receiver 1)

TIP; = 1/(3N3) Ek;ﬁi 2#51'51: (0) + NSiSk(l)y

where ps;s,(I) = Re (E,I,V;ll_N Cs,5,(V)Cs;s,(v + l)) . Usu-

ally, the average interference parameter AIP = 20(0) + p(1)

with u(t) = 1/(K(K — 1)) 211;1 Zle,k#psisk (t) is used as
measure for the average system performance. To simplify the
notation, we define the sum S(F,v) = Esef Css(v).

IV. EXPECTED VALUES OF THE AIP
Since the AIP depends on the cyclic shift of the code-
sequences, we suppose that the cyclic phase of the sequences is
picked at random with each of the shifts being equally likely
to be chosen [4]. Then, the expected value of x(0) can be
derived: E[u(0)] =

. N-1
2 " _
N2 4 ———NzM(M_l) Z;(N_V)z [S(f,u)s (f,u)—s(]-',y,,,)} .

The expected value of p(1) and the variance of the AIP
can be expressed in terms of other sums S(F,vv +1) =
Zse}' Cs()Css(v +1)).  These sums have been derived
for all families described in section I, too.

V. RESULTS
We have investigated families of size M ~ (N + 1)* with
t > 1. Typical periodic peak correlation parameters 8 are
] <2/N+1+lorf <2V /N ¥i+1 if binary sequences
are considered or § < t/N + 1+ 1 for sequences with larger
phase alphabet. In both cases, we found E(u(1)) << E(u(0))
and hence

E(AIP) & 2E(u(0)) = 2N? — %Q_N“_l)(_N—_U

K-1

Obviously, E[AIP] does not depend on the size of the phase-
alphabet and is nearly independent of the size of the family.
For the described linear families, the E[AIP] becomes 2N?
- the expected value for random sequences - if N tends to
infinity. For the variance, we found noticeable differences de-
pending on the investigated families. Using these results, the
known numerical results on the AIP of linear code-sequences
for different selection criteria of cyclic shifts (e.g. LSE/AO,
MSE/AO) can be explained. Moreover, bounds on the achiev-
able AIP for all linear families are derived.
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Abstract — In this paper we present the Wavelet Or-
thogonal Frequency Division Multiplexing (WOFDM)
that in conjunction with Frequency Hopping can be
used for Synchronous Code Division Multiple Access
(FH/S-CDMA). A Low Probability of Intercept (LPI)
modulation scheme based on a pseudo random selec-
tion of basis functions for modulation spanning the
same frequency channel is also described.

I. INTRODUCTION

In [1] the use of scaling functions and wavelets, multiplicity-
M wavelets and wavelet packets to modulate different infor-
mation signals on adjacent channels with overlapping spectra
was proposed. In this paper we demonstrate an application of
this technique for multiple access communication [2].

The envisioned Frequency-Hopped Synchronous Code Di-
vision Multiple Access (FH/S-CDMA) scheme is for a multi-
point to point fully synchronized communication. In this envi-
ronment, wavelets provides a great flexibility in controlling the
data rate and hence the power, making the proposed CDMA
scheme inherently adaptive.

1I. ORTHOGONAL FREQUENCY CHANNELIZATION

The basic techniques to subdivide a given frequency band
into orthogonal subchannels spanned by basis functions de-
rived from the scaling functions and wavelets are described
in [1]. This defines the WOFDM modulation scheme, which
possesses the following characteristics: (1) orthogonal chan-
nels are spanned by translates of a single envelope function.
The translation step size is directly related to the BandWidth
(BW) of the subchannel; (2) the channels overlap in frequency
but remain orthogonal with proper synchronization; (3) there
is great flexibility in how the available BW is channelized, and
this channelization has a tree structure. It is therefore possi-
ble to accommodate variable rate data modulation by routing
data to different nodes of the tree structure that have different
data rate capacities; (4) this switching induces some transient
InterSymbol Interference (ISI).

ITI. FH/S-CDMA wITH WAVELETS

The described WOFDM scheme can be employed for mul-
tiple access communications using frequency hopping, where
a given information sequence can be hopped by routing the
data in this sequence to the input of the filter generating the
desired frequency channel.

The key features of this scheme are: (1) there is no need
for a programmable frequency synthesizer; (2) the size of the
hopping BW is related to'the information data rate. Changes
in this data rate are accommodated by routing the data to the
appropriate internal nodes of the tree structure. The protocol
for how the variable data rate is to be accommodated should
be established from the outset and programmed into the oper-
ation of the connection network; (3) multicarrier modulation

1This work was partially supported by M.U.R.S.T.

is possible with the proposed technique. Note that in the pro-
posed scheme a high degree of security may be afforded to the
communication system using a relatively small number of or-
thogonal frequency channels due to the combinatorial power
of the connection network; (4) the hopping rate relative to
the data rate is directly controlled by the rate at which the
connection machine changes its patterns relative to the maxi-
mum rate each channel can be utilized; (5) aside from carrier
synchronization needed to perform the down conversion, clock
synchronization and PN code synchronization are needed for
proper operation.

Direct Sequence (DS) spectrum spreading could be incor-
porated into the design by forming the product between the
spreading code and the information sequence prior to mod-
ulating the wavelet filters. In this process what controls the
BW of each hopping channel is the PN code rate used for the
DS component.

1V. Low PROBABILITY OF INTERCEPT
We previously noted that the switching of frequency chan-

nels employed in order to accommodate variations in source
data rate causes transient ISI [3]. This transient ISI can
be used to introduce a novel LPI modulation scheme. More
specifically, suppose a given frequency band spanned by a shift
orthogonal function is channelized in a variety of ways. Each
such channelization corresponds to a different distribution of
dimensions in the time-frequency plane. A modulator can be
state dependent and use a given distribution of dimensions
for modulation in accordance with a PN code known to the
transmitter and receiver. Suppose the modulator state varies
rapidly so that a given distribution of dimensions is not used
for more that a few symboling intervals. An unintended re-
ceiver with perfect knowledge of the waveforms used by the
transmitter and perfect knowledge of symbol timing may still
be unable to recover the symbols since it perceives a sequence
with very high randomly fluctuating ISI [3].

The above procedure can be embedded in the FH/S-
CDMA, and the multicarrier modulation scheme proposed
here, and two PN codes could be used by each information
source, one controlling the operation of the switching network
used to frequency hop the spectrum of the transmitted signal,
and the other used to select which distribution of dimensions
in the time-frequency plane is to be used by the modulator.
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Since the spreading operation and error correction must
share the bandwidth available in a CDMA system, it is appro-
priate to approach these problems jointly. Several papers have
addressed this problem with promising results [1, 2]. Hui has
shown that under certain assumptions, the system performs
better when more bandwidth is devoted to error correction
[2]. Giallorenzi [3] shows that combining error correction de-
coding and multiuser detection significantly improves system
performance. We extend this research by considering not only
simultaneous despreading and decoding, but also the simulta-
neous encoding and spreading.

We consider a coded asynchronous CDMA system over an
AWGN channel with constant information rate, R;. Each
user’s transmission rate is Riz = Ry - Q- N where 1/Q is
the convolutional code rate and N is the spreading factor.
The receiver matches to each signature sequence and performs
maximum likelihood sequence detection.

For fixed R; and R:; we optimize the Asymptotic Mul-
tiuser Coding Gain (AMCG) with respect to @ and N. The
AMCG relates the energy gain for high SNR to the sin-
gle user uncoded antipodal system, i.e. 7 in the expression
Pe = Q{\/2Es/Non} where Q(-) is the Marcum-Q function,
Ey is the information bit energy, and N, is the one sided noise
density. We have extended this measure derived in [3] which
considers @ = 2 and fixed N to arbitrary @ and N.

The probability of error for the k® user can be
bounded by P{ni(&)=nk,min} Q{\/(2Eex/No)nr(€)} < Pe(k)
< Yopec 2oe PAIDYQ{\/(2Ebi/No)ni(8)} where C is the
codebook , € is any valid error sequence for the codeword
D, nx(e) is the energy gain of user k when the error event
€ occurs, Mk,min = ming{nx(€)} and FEpx is the energy of
user k. For high SNR, 5k min will dominate, hence it is
the AMCG. In the 2 user case the AMCG is bounded by

min {f (\/E2/E1,df,€) ,df/Q} < Nk,min < 7x(€) for some
valid € where F; and E, are the two user’s energies, £ is
the sum of the magnitude of the two partial crosscorrela-
tion, dj is the free distance of the convolutional code and
F(VE2/Er,dy,€) = 1/2[ds(1+ E2/ E1) = 26V E2 [ Ex (ds +1)].

These bounds for two users are computed for 3 different
length M-sequences in Fig.1 (a) and (b). Plots (a) and (b)
represent Ri; = 32R; and R:; = 64R; respectively. These
bounds were computed using the maximum partial crosscor-
relations over all delays between the two users. Fig.1 (a) shows
that when the partial crosscorrelations approach 1, the system
with the lower coding rate may not show any improvement.
However, when the crosscorrelations are high but less than 1,
as in Fig.1 (b), the lower rate codes perform as well as the
single user detector, i.e. ACMG=ACG=d;/Q for all F>/F;.

Since high crosscorrelations between signature sequences
can prevent expected coding gains, we propose spreading and
despreading in the frequency domain which was considered
for optical systems in [4]. Because delays appear as phase

1Y. Rozenbaum is with Plantronics, Inc., Santa Cruz, CA
2Supported in part by NSF grant #ECS-9409452.
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Fig. 1: In (a), (c), and (d) for Q=8,4,2: dy=21, 10, and 5, and
N=4, 8 and 16, and for (b) d;=21,10, and 5 and N=8,16 and 32.
The crosscorrelations ¢ for Q=8,4,2 are (a): 1.0,0.71, 0.6, (b): 0.71,
0.6, 0.35, (c): 1.0, .43, .35 and (d): 0,0,0.

factors in the frequency domain, we can find sequences for an
asynchronous system that are both short and have sufficiently
low crosscorrelations to allow coding gains.

In this system the encoder multiplies each encoded bit by
the inverse FFT of a signature sequence that has low crosscor-
relation in the frequency domain. The decoder matches the
Fourier transform of each received symbol to the signature
sequence and sends the output to a maximum likelihood se-
quence decoder. In Fig.l (c) and (d), we show the bounds
for the AMCG for two frequency domain codes with con-
stant rates, Riz = 32R;. Fig.l (¢) and (d) are computed
assuming worst case interference for frequency domain M-
sequences and Hadamard codes, respectively. These codes
show a great improvement over the time domain codes, and,
in fact, the Hadamard sequence achieves the single user ACG
for all F,/E,. Although the Hadamard sequences outper-
form the M-sequences, there are fewer available Hadamard
sequences for a given sequence length.

The asymptotic multiuser coding gain of a CDMA system
can achieve the single user coding gain when the crosscorrela-
tions between users are low. However, since low crosscorrela-
tions between short signature sequences are difficult to obtain
in the time domain in an asynchronous system, frequency do-
main signature sequences are a viable alternative.
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Abstract — We propose an analytical method to up-
per bound the bit error probability of parallel con-
catenated block and convolutional codes.

I. INTRODUCTION

The so called turbo codes [1], which in the following we will
call parallel concatenated convolutional codes (PCCC), con-
sist of two linear, generally simple convolutional codes (the
constituent codes, CC) linked by an interleaver as shown in
Fig. 1. In [1], PCCC’s with appropriate choices of the CC’s
and of the interleaver have been shown to yield coding gains
close to those predicted by the Shannon limit, yet keeping the
complexity of an ”ad hoc” iterative soft-decoding procedure
significantly low and comparable to that of the CC’s. These
results have been further reinforced by [2]. Despite the aston-
ishing performance of the turbo codes, however, neither seri-
ous attempts toward a theoretical explanation of the codes be-
havior/performance nor a sufficient comprehension of the role
and relative importance of the ingredients of a PCCC have
appeared in the literature so far. In this paper, we propose
an analytical method to upper bound the error probability of
a PCCC, and use it to shed light on important issues raised
by these new coding schemes.

II. AN ANALYTICAL UPPER BOUND TO THE BIT ERROR
PROBABILITY OF PCCC’s

Fig. 1 shows clearly the discouraging complexity of the at-
tempts trying to obtain the weight enumerating function of a
PCCC, especially when the length N of the interleaver is large
(say 1000-10000) as it should be to yield good performance.
The only viable solution to the problem seems to pass through
an appropriate and meaningful way of making independent
the weights of the parity checks generated by the first and
second encoders. To this end, we define a uniform interleaver
as a probabilistic device which maps a given input informa-

tion sequence of length N and weight w into all distinct ({X)

permutations with equal probability 1/ ({X) Use of this de-

vice, instead of the actual interleaver, makes the weight enu-
merating functions AS!(Z) and A$2(Z) of the parity checks
generated by the two encoders, conditioned to a given weight
w of the input sequence, independent. As a consequence, the
conditional weight enumerating function of the parity check
bits of the whole PCCC ASP(Z) can be easily obtained as

agr(z) = A2DA2E),
(¥)

and, from it, an upper bound to the bit error probability can
be written in the form

N
w w 4 C
P(e) <Y 2W AwP(Z)|W=z=e'Rch e

w=1

1This work was supported by European Space Agency and
by CNR wunder Progetto Finalizzato Trasporti, sub-project
Prometheus.
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Fig. 1: Parallel Concatenated Convolutional Code

where Rc is the rate of the PCCC. Previous results refer
to an (N — L,3N) block code equivalent to the PCCC and
obtained from it considering input information sequences of
length N — L and codewords of length 3N, where L is the
constraint length of the CC’s, generated by terminating trel-
lises of the two CC’s. Extensions to the case of continuous
PCCC can be done [3)].

III. THE ROLE OF INTERLEAVER AND CC’s

Use of the uniform interleaver permits a separation of the
effects of the interleaver length and of the CC’s on the per-
formance of the PCCC. Using our analytical tools, we see
that, for large N and in the limits of the validity of the upper
bounds, the interleaver provides an interleaevr gain which de-
creases the bit error probability by a factor 1/N. Moreover,
we prove that this gain can be obtained only if the CC’s are
recursive convolutional codes, and that this is due to the par-
ticular weight profile of them, characterized by the fact that
input sequences of weight w = 1 do not produce error events
of finite lengths. Finally, by extensive simulations, we validate
the upper bounds based on the uniform interleaver, showing
that an interleaver chosen as a random permutation is likely
to yield bit error probabilities very close to those anticipated
by the bounds.

As to the role of the recursive CC’s (defined by the generat-
ing function (1, n(D)/d(D) for the case of rate 1/2 ), we have
shown tkat a reasonable design criterion consists in choos-
ing the polynomial d(D) defining the feedback connections as
a primitive polynomial, and that the choice of the numerator
n(D) should aim at maximizing the weight of the parity checks
for input information sequences of minimum weight w = 2.
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I. INTRODUCTION
Several parallel concatenated coding schemes (turbo codes)

based on multi-memory (MM) convolutional codes (more
specifically, a (2,1,4,7) code) were recently proposed to
achieve near Shannon-limit error correction performance with
reasonable decoding complexity [1]-[3]. On the other hand,
in many cases of interest, unit-memory (UM) codes have been
demonstrated to have larger free distances than the MM codes
with the same rate and the same number of memory elements
[4]. In this paper, new turbo codes based on the (8,4, 3,8) UM
Hamming code [4] will be developed and shown to possess bet-
ter performance potential in some senses. The standard turbo
decoding algorithms, however, do not appear to achieve this
potential.
II. ENCODER

An equivalent systematic recursive generator matrix for the
UM Hamming code can be obtained by first properly permut-
ing the columns and then multiplying on the left by the inverse
of the left-most 4 x 4 sub-matrix of the original generator ma-
trix:

1000 g5 1 & 1
_ o100 1 HF5 1 &
G=WFI=1o 010 & 1T 1 o
00011;;‘15@-1

The corresponding encoder can be implemented with three
memory elements. The encoder for the UM turbo (UMT)
code is similar to those for the MMT codes [1]-[3], except that
there are multiple inputs to the encoder of the component
codes. The trellis is terminated using the method of [3]. Since
the systematic bits from the second encoder are discarded, the
overall code rate is K/3(K + 4), where K is the interleaver
size.
ITI. THE MAP ALGORITHM FOR MULTI-INPUT

RECURSIVE TRELLIS CODES
In this section, a modified MAP algorithm is presented to

deal with multiple inputs. Let the state of the encoder for
the (n,k,v) code at time ¢t be S; € {0,1,...,2" — 1}, for
t=0,...,L = K/k, where the initial and final states, Sp and
Si, are known. The input block u; = (us,1,... ,usx) causes
a transition from S;_; to S:, and the corresponding output
codeword X; = (#:1,...,%tn) is observed over an AWGN
channel as y: = (y¢,1,... ,y¢,n), for t = 1,..., L. The log like-
lihood ratios of the a posteriori probabilities can be computed
as:

Yo o Yoy (8, 8) ar1(s") Be(s)

Es Es’ 7;'1(3’a 8) Q-1 (31) /Bt (3)

2o Te(s'y8) a—1(s')
Es Za’ Ft(sl, s) Q-1 (S’)’
Buls) = Yo Dev1(s,8) Bega (8)

5 S D@, 9) (&)’

where, if the transition s’ — s is allowed by input us ; = ¢,

A(ut,;) = log

ai(s) = fort=1,...,L

fort=L-1,...,0

7,3(8',8) = Pr{ue; =i} Pr{y:|Ss = s,u5 =1,5-1 = ¢'}

Te(sy) = Y Pr{u=i}Pr{y:|S =su =i5_ =4}
3

i:s'—s

IV. DECODER AND PERFORMANCE
The decoder structure used is similar to that in [2] except
that the MAP algorithm in III is applied instead. Numerical
results are shown in Fig. 1 and summarized as follows:

e The minimum distance of the (60,16) UMT code with
the best known interleaver is 14. Maximum-likelihood
decoding simulation of this code shows a gain of 0.5 dB
over the (80, 16) MMT code [3] which has the same min-
imum distance. The use of turbo decoding introduces a
loss of about 1.5 dB.

o For large block lengths, simulation results show that
the turbo decoding algorithm converges faster than that
for MMT codes, but the performance is not as good.
Comparing these with the transfer bounds computed
with a double recursion method and a random averaging
argument [5], a gap of coding gain with turbo decoding
as in the previous case can be observed again.
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Abstract - In this paper an analytical approach to newly invented
Turbo-Codes (TC) is presented. That approach is based on
evaluating the properties of TC by means of the Minimum
Hamming Distance (MHD) and the Hamming Distance Spectrum
(HDS). An algorithm for computing HDS is presented and
numerical results are discussed. The concept of basic return-
to-zero sequence is introduced. It is shown how basic return-to-
zero sequences can be used in the algorithm for computing
HDS and how it can justify the properties of TC. Numerical
results of computing MHD and HDS for different TCs are

presented and verified by simulations. !

1. INTRODUCTION

TC seem to be very attractive for applications in practical
communication systems, since their error performance is close to
the Shannon limit [1, 2]. During the last two years some
modifications of the originally proposed parameters of both the
encoder and decoder . of the turbo-code, have been proposed,
which lead to the improvement of the turbo-code performance. In
most cases the performance of turbo-codes has been evaluated by
means of simulation. In this paper we show that the properties of
turbo-codes can be predicted by means of MHD and HDS. We
describe a method to efficiently calculate the MHD and HDS of the
turbo-codes, provided that the interleaver size is not larger than
16x16. This procedure is a modification of the well known Fano-
algorithm. We introduce the concept of basic return-to-zero
sequence. We shown how basic return-to-zero sequence can be
used in the Fano algorithm for computing HDS. We show also how
the properties of are correlated with basic return-to-zero sequences
can justify the properties of TC.

li. DESCRIPTION OF THE SYSTEM

The scheme of a turbo-encoder is given in Fig. 1 [1]. Turbo-encoder
consists of two Recursive Systematic Coders (RSC), Interleaver (1)
and puncturing circuit. Both RSC encoders are identical rate-1/2
convolutional encoders. In our study we have considered RSC
encoders: (23,35), (7,5), (5.7), (15,17), (5.7), (1,1)2‘ The puncturing
pattern used by us is following: we transmit bit YO without any
change, alternatively every second bit Y1, Y2 is punctured Thus the
overall rate of the TC is 1/2 and the transmitted sequence is: YO0, Y1,
YO, Y2, Y0, Y1 ... '

iIl. AN ALGORITHM FOR COMPUTING HDS
The algorithm used by us for computing HDS of the turbo-codes is
the modified Fano algorithm. The modification is following: we use
the fact that in order for a turbo-coder to return to the all-zero-state,
poth RSC encoders must come to the zero state. So, instead of
applying to the input of the turbo-code arbitrary binary sequences,
we feed it only with some selected sequences which are known to
force RSC1 to come to the zero state, so called return-to-zero
sequences. Basic return-to-zero sequences are defined as those
return-to-zero sequences which are not a linear combination of other
return-to-zero sequences. We have proven that for any recursive

1This work was partially sponsored by the following grant of the
National Committee for the Scientific Research: KBN-
8550401905.

2 Generating polynomials are given in the octal notation.

code there exists only one basic return-to-zero sequence. For
example, for RSC (5,7) the basic return-to-zero sequence is x=[101],
for RSC (7,5) it is equal to x=[111].

YO
Y1
—‘ RSC1 iﬁ YO0, Y1', Y2
Puncturing
a Y2
91 | '——%1 RSC2 J——%

Fig. 1. The scheme of the turbo-encoder.

IV. BASIC RETURN-TO-ZERO SEQUENCE

Basic return-to-zero sequence can always help in rejecting "bad"
RSC encoders. We have shown that for any TC (whatever the size
or kind of interleaving is) with RSC (5,7) one basic return-to-zero
sequence can drive TC to the all-zero-state. For such TC when we
use the puncturing pattern presented in Fig. 2 the weight of an
output sequence of TC is always equal to 5. Thus for that particular
RSC code and puncturing pattern any changes in the size of the
interleaver or introducing non-uniformity to the interleaver, will not
lead to the increase of MHD.

V. CONCLUSIONS

We have computed HDS for a range of TC, for different RSC codes,

different interleavers (sizes up to 16x16, both uniform and non-

uniform). We have also verified our results by simulation.

Conclusions of our study are the following:

U Simulation results show that analytical approach by using
MHD and HDS can be used for evaluating the properties of
turbo-codes. For example for TC with RSC (7,5) and the
interleaver 1=8x8 the difference between simulation and
analytical results for BER=10° is 0.22 dB for uniform
interleaving and 0.7 dB for non-uniform one.

. The number of elements in the HDS which must be taken into
account does not exceed 3 (sometimes one spectrum element
is sufficient). For example for TC with RSC (7,5) and uniform
interleaver 1=8x8 the difference between BER curves for 1 and
3 (or more) elements is 0.4 dB for BER=10% and 0 dB for
BER=10"%. There is no difference in BER between 3 or more
elements.

. BER of the turbo-code can be increased by:

- increasing the constraint length of the RSC code. For
example for BER=10"% and uniform interleaver 1=8x8 the TC
with RSC (23,35) is better than TC with RSC (15,17) by 3.2
dB, and outperforms TC with RSC (1,1) by about 5.8 dB.

- increasing the size of the interleaver. For example for TC
with RSC (7,5) for BER=10"® TC with 1=8x16 outperforms TC
with 1=8x8 by 2.4 dB and TC with no interleaving by 1.6 dB.

- introducing non-uniformity to the interleaver,

L] For any Recursive Code there exists only one basic return-to-
zero sequence. By analyzing the properties of basic return-to-
zero sequence we may find "bad" codes. The problem which is
still open is how basic return-to-zero sequence can be used
for designing TC which would possess very good properties
(i.e. large MHD value).
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Low-Rate Turbo Codes for Deep-Space Communications
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Abstract — We develop b/n multiple turbo codes and
an iterative turbo decoding scheme based on an ap-
proximation to the optimum bit decision rule (MAP).
For random interleaver size of 16384 bits, a bit error
probability of 10~° at a required E,/N, of about 0.8 dB
from the binary-input channel capacity for rate b/n
was obtained for various turbo codes. Examples are
given for rate b/n =1/2, 1/3, 1/4 and 2/6 turbo codes
using component codes with up to 16 states.

I. INTRODUCTION

Turbo codes were recently proposed by Berrou, Glavieux and Thiti-
majshima [1]. We propose rate b/n codes that consist of the parallel
concatenation of g systematic recursive convolutional codes, with
random interleavers of size N between rate b/n;, encoders, such that
n= Z?=1 n;. Encoding and decoding is done block by block. En-
coders are forced to the all-zero state at the end of each block by a
simple termination method [4].

II. TurBO DECODING FOR MULTIPLE CODES

Let u; be abinary random variable taking values in {0, 1}, representing
the sequence of information bits u = (uy, ..., uyp). This sequence
is partitioned into N groups of b bits representing input symbols.
Bit-by-bit, rather than symbol-by-symbol, interleaving is performed.

The modified MAP algorithm [5] provides the log likelihood ratio

= log ﬁi::%é:g’,; given the received symbols y, where
Ly = log 2 u =1 Py l_[,# P(u;) Plu,=1) M
k —
Zu u=o P (ylw) n,;ek P(u)) P(u, =0y

Consider the parallel concatenation of ¢ codes. The combination of
permuter and systematic recursive convolutional code is considered
as a block code with input u and output x;, j = 1,2,...,4. The
components of x; may be binary or non-binary. For the non-binary
case multilevel modulation is used, resulting in turbo trellis coded
modulation (TTCM). The corresponding received sequences are y ;.

The optimum bit decision rule (MAP) for data with uniform prob-

abilities is \
Zu.uk=1 nj=1 P(leu)
Zu ug=0 1—[3—1 P(yjlu)

An appr0x1mat10n to P(y;|u) was used in [4] to obtain (2) as Ly =
Z} =t L i, where Lj;’s are iterative solutions to a set of non-linear
equations that can be efficiently computed using the MAP algorithm
with pre-interleaving and post-deinterleaving as

= log @

i (m)

L
LoD Z og 2 s IP(yflu)Hl#e s 3
jk Z im €)
Zuuk—o P(y;jlu) l‘[’#e I=11#j L
fork=1,2,...,Nbandj =1,2,...,q. Then Ly = limpc L% .

All initial conditions are set to zero, i.e. iﬁ) =0.

I'The research described in this paper was performed at the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration.

III. PERFORMANCE
The bit error rate performance of these codes was evaluated by using
transfer function bounds [3] [2]. In [2] it was shown that transfer
function bounds are very useful for signal-to-noise ratios above the
cutoff rate threshold and that they cannot accurately predict perfor-
mance in the region between cutoff rate and capacity. In this region,
the performance was computed by simulation.

The figure below shows the performance of turbo codes with
the following generators: For two K = 5 constituent codes,
{, gb/gav gc/ga) and (gb/ga), with 8a = (3D actats & = (33ocrat
and g. = (25)ociar; For three K = 3 codes, (1, g»/g.) and (g5/84)
with g, = (Mocrar and g = (5)pcrars Forthree K = 4 codes, (1, g5/84)
and (g,/84) with g, = (13)s¢rar and g, = (11)crar.

Further results at BER=10"3 were obtained for two constituent
codes with interleaving size N = 16384 as follows. For a rate 1/2
turbo code using two codes, K = 2 (differential encoder) with (g5 /g.)
where 82 = Boctar and gp = (1)octar, and K =5 with (gb/ga) where
8z = (23)ocrar and g, = (33)ocrar the required bit SNR was 0.85 dB.
For rate 1/3, we used two K = 5 codes, (1, g»/g.) and (g,/8.) with
8 = (23)pcrar and g = (33)erar and obtained bit SNR= 0.25 dB.
For rate 1/4, we used two K = 5 codes with (1, g,/g4., 8./&) and
(gb/ga) with 8a = (23)octala 8 = (33)061‘1[ and 8 = (25)0cml and
obtained bit SNR = 0 dB. For a rate 2/6 turbo code each constituent
code is constructed from two parallel K = 3 codes (1, g,1/84, 8:1/8a)
and (1, 2,2/8q, 8c2/84) Where the output of g,;/g, is added to the
output of g5,/g, and the output of g.1/g, is added to the output of
gc2/ga- 8a = (7)0001’ 8h = (6)attals gcl = (1)octa!s 8 = (7)acm!,
82 = (@)ocrar- The resulting code has 16 states with two inputs and
four outputs. The second code is identical to the first one but not using
the systematic bits. BER=10"> was obtained at bit SNR=0.2 dB.
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'Turbo' Coding for Deep Space Applications
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Abstract - The performance of the 'turbo' coding scheme is
measured and an error floor is discovered. These residual errors
are corrected with an outer BCH code. The complexity of the
system is discussed, and for low data rates a realizable system
operating at E,/N; below 0.2 dB is presented.

I. INTRODUCTION

Recently it has been discovered that a very good performance can be
achieved with iterative decoding of a parallel concatenation of small
convolutional codes [1]. This coding scheme is named 'turbo’ coding.
The basic idea is to encode the information sequence twice, the second
time after a pseudo-random interleaver, and to do iterative decoding
on the two encoded sequences in two decoders. The system can be
regarded as a kind of product code. Due to the information exchange
among the two decoders the decoding algorithm must provide soft
output. We use the MAP algorithm [2] which actually calculates the
a posteriori probability of each information bit. The convolutional
codes are used in a recursive systematic form since it gives an im-
proved performance with this system.

II. THE ERROR FLOOR

The first simulations were based on the recursive systematic code
(1,14D%14+D+D?+D3+D*. We use the same code for both
encoders but for the second one the information sequence is not
transmitted. This gives an overall rate of 1/3. We use a block length
of 10384 information bits. For all simulations presented in this paper
all numbers includihg the channel input are represented as floating
point values.

As seen from Figure 1, the results achieved with this system are very
promising since the Bit Error Rate (BER) after 18 iterations is close
to 10_5 already at 0.2 dB. Unfortunately the BER decreases very
slowly for improved SNR. What we see are many frames with only
a few bit errors. This is due to the low free distance of this coding
scheme. The free distance of this system might be as low as 10. The
actual profile depends on the specific interleaver.

A search for better interleavers might give improved performance.
However, the main problem is combinations of two low weight words
for the basic code. Consequently the performance with interleaver
structures like block interleavers is quite poor, and a search among
the random interleavers can only remove a couple of the worst low
weight patterns.

IHl. THE EXTENDED 'TURBO' CODING SCHEME

An obvious way to remove the error floor (or saddle) is to use an outer
code. Since the bursts consist of very few bit errors, we will use a
(10384,10000) BCH code capable of correcting 24 errors. This outer
code corrects all the residual errors, but we loose 0.16 dB due to the
decreased rate. With this system the Probability of Frame Loss (PFL)
is below 107# at 0.4 dB.

Improved performance can be achieved with a system based on rate
1/3 codes with only 8 states. This gives rate 1/5 for the 'turbo' coding
scheme. In this case we have also used the outer BCH code.

With this system we have simulated 25,000 frames without frameloss
at 0.1 dB. This means that the 90% confidence level for the PEL is
below 1074, The BER is shown in Figure 1.

IV. COMPLEXITY

The performance must of course be compared to the complexity. We
have estimated the number of operations needed in the MAP algorithm
for recursive systematic codes and conclude that this is about 4 times
the number of operations in a Viterbi decoder. This means that the
number of operations for 18 iterations with M=3 codes is in the order
of 212. We believe that with a logarithm quantization an 8 bit represen-
tation is sufficient for the internal representation in the MAP decoder.
With this quantization and channel input quantized in 16 levels we
expect a performance degradation about 0.1 dB.

For low data rates the 'turbo’ coding scheme can be implemented with
only one MAP decoder (used 2 X 18 times), and the decoder for the
BCH code can be implemented on a DSP. Further the calculations
inside the MAP decoder can be serialized, using the same hardware
for each state.

This means that for data rates below 100 kbit/s the complexity of this
system is moderate, and the extended 'turbo’ coding scheme might
be an alternative to ordinary concatenated systems.
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Interleaver Design for Three Dimensional Turbo Codes
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Abstract — A new bandwidth efficient interleaver is de-
scribed for turbo codes when used to decode short frames
of data using the MAP algorithm. Applications in rate
compatible turbo codes and encryption are presented.

1. INTRODUCTION

It is well known that the interleaver design is the key 10
achieve the best performance for turbo codes [1] . For very
large frame sizes, random interleavers are ncar oplimum. For
small frame sizes — for which the interleaver depth is less than
ten times the constraint length of the component convolu-
tional code — a random interleaver is not the best choice. In the
following, we consider a threc dimensional turbo-code
(3D-TC) shown in Figure 1 which has the feedback poly-
nomial equal to all ones.

II. DESIGN CRITERIA

In order to use a maximum a posteriori (MAP) decoding
algorithm [2], the initial and the final state of cach one dimen-
sional encoder should be fixed for all three coded sequences.
This could be achieved by appending threc different “tails™,
one for each coded sequence which will reduce the bit rate. A
new interleaver type called a “simile” interlcaver was de-
scribed in [3] for a two—dimensional turbo—code which nceds
only one “tail” to be appended. A similar method will be used
to create a “simile” interlcaver for a 3D-TC,

We denote v the encoder memory size of cach one dimen-
sional encoder. We can rearrange the whole block of N in-
formation bits in mod (v + 1) sequences. The important ad-
vantage in doing this is that from the point of vicw of the final
encoder state, the order of the individual bits in each sequence
does not matter as long as they belong to the same scquence.
The “simile” interleaver has to perform the interleaving of the
bits within each particular sequence in order to drive the en-
coder into the same state as without interleaving. In {3] we de-
scribed a particular block helical interleaver. This can be ex-
tended to 3D-TC by assuming that the number ol columns is
a multiple of (v + 1). The information scquence is stored row-
wise and the two interleaved sequences start (rom the left
corners: bottom left corner and up the diagonal for interlcaver
I and top left corner and down the diagonal for interleaver I,

A second criteria is needed if the coded bits are punctured:
each information bit should have associated with it. after
puncturing, one and only one coded bit. In this way the correc-
tion capability of the code is uniformly distributed over all in-
formation bits. This type of interleaver was introduced in [4]
for a two dimensional turbo—code and was called an “odd-
even” type of interleaver.

Using a block helical interlcaver, if the number of columns
is a multiple of the dimension order, which is 3 for 3D-TC. we
can multiplex the coded bits of the straight sequence whose
index in time modulo 3 is zero with the interleaved 1 coded
bits whose index in time modulo 3 is one and with the inter-

This work was supported by the Institute for Telecommu-
nications Research, University of South Australia.

leaved 1P coded bits whose index in time modulo 3 is two. In
this way all information bits have associated with them one
and only one coded bit.

III. APPLICATIONS

The coding gain can be varied without changing the con-
volutional code. In a good channel a rate half turbo code com-
poscd of the uncoded sequence {x} and the punctured se-
quence {y/y?} can be used. If the channel becomes noisier a
ratc third code can be obtained by transmitting {x}, {y} and
{y*} scquences. Tt was shown in [5] that the probability of
crror is proportional with N ™', For an even worse channel a
rate quarter code can be used by transmitting the {y®} se-
quence which would make the probability of error propor-
tional with N2 and so on. As in the case of rate compatible
convolutional codes. the same turbo decoder can be used in all
cases.

In Figure 1 we use the sixteen state turbo code (v=4) [1].
Each interleaver is made from five pseudo random inter-
leavers with different generator polynomials which can start
from dilferent states produced by a long pseudo random gen-
erator. The outputs of the turbo encoder are buried in noise
whose variance is known and can be changed each frame or
even in cach interleaved sequence. The long pseudo random
gencrator which generates the starting states of the inter-
leavers together with the variance of the noise are the keys to
the proposced encryption system. We assume these keys to be
sceret and known at the receiver end. This principle is similar
with that for CDMA transmissions.
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Abstract — An optimal interleaving between two
component encoders of a turbo—code is proposed. For
any real constructable interleaver the optimality crite-
rion is given. For component codes (CC) with known
weight distribution (WD) the WD of the turbo-code
with perfect interleaving is calculated. As CC’s the
random codes and terminated convolutional codes
are considered. It is shown that the often observed
“break” in the performance curves for turbo—codes is
a result of their “broken” WD.

I. INTRODUCTION
Any codeword of the recently introduced turbo-codes [1] has
the following structure: [Z|ZA|Z’A], where T is the k-tuple
of the information bits, A is the k x r binary matrix, and 7’
is a version of Z with interleaved (permutated) coordinates.
As CC’s both systematic block codes and convolutional codes
with terminated encoders have been in use until now. The
rate of the whole code in both cases is R = k/(k + 2r). The
linearity of turbo-codes is shown in [2].

II. OPTIMAL INTERLEAVING AND WD oF WHOLE
CopE wiTHd KNowN WD’s oF COMPONENT CODES
Dispose all 2*¥ — 1 nonzero codewords of one CC into k groups
so that each ith (i = 1, k) group consists of (’:) codewords of
weight ¢ in the information part. Note, that if the information
vector T belongs to the ith group, then the permutated vector

I’ will be in this group too.

The aim of interleaving is to produce (by manipulating the
weights of the second redundancy part) the whole codewords
with the overall weights as large as possible. It means that
within each group the first redundancy part with small weight
should be associated after interleaving with a second redun-
dancy part with large weight and vice versa.

Let the WD of CC be known in the form A(z,j), which
denotes the number of codewords with Hamming weight ¢ of
the information bits and weight j of the redundancy bits. Wi-
thin each group dispose the codewords with non-decreasing
weights of the redundancy part so that for any ! holds:
i1+ 1) > j(5,1), where j(3,1), 1 = 1,(%), is the weight
of the redundancy part of the lth codeword in the disposed
ith group. Note, that for any ¢ and ! the numbers j(i,1) are
determined by A(3, j). The lth codeword of the turbo-code in
this group has then weight

Wi, 1) =i+ 30,1 + 30, (§) —1+1). (1)

Counting all codewords, from (1) we immediately obtain the
WD of the turbo-code in the form A(%, j), which yields also
the number A(w) of codewords with weight w.

An interleaving, which leads to the same WD of the turbo-
code as can be obtained from (1), will be called a fully optimal
interleaving (f.o.i.).

Viewing W (i, 1) for each ¢ as a random variable of I, the
criterion for the optimal interleaving can be formulated as a
problem of minimizing its variance: o {W(s,1)} — min.

III. TurBOo—CoDEs WITH RanDOM CC’s
The random (k + r, k) code has the WD A(w) = (ky)/Zr,
which is obtained from the equation between the probability
of occurrence of (k + r)-tuple and of codeword both of weight
w. However, for applying (1) the WD in the form A(3, j) is
required. From a similar equation for each group we get:

Al = (5 ()% (2)
(O =)

t+i=w
the code with WD (2) is a random code too.

Combining (2) and (1), we see that for each group ¢ (due to
the symmetry (;% = (T: J)) each parity—weight j is associated
after f.o.i. with a second parity—-weight r — . Thus, Vi, [ :
W(i,1) = i + r. Furthermore, A(i,r) = (’f), A(t,j#r)=0
and the WD of the whole code is: A(0) =1, A(w) = (%) for
r<w < k+r, and A(w) = 0 otherwise. Hence, the minimum
distance is r + 1, which increases with increasing k.

Because of Vandermonde convolution:

IV. ConvoLuTIONAL CODES As CC’s
WD of these terminated codes for great k and rate R = 1/2

can be written as A(z,])/(’:) = (;)pf,(l — pie)" 7, where
pie = (1—(1—2i/k)’®)/2, for feed-back encoders J(t) is a
linear function of the time ¢t = 1, % and for feed—forward en-
coders J(t) it is a constant J equal to the number of nonzero
terms in the generator polynomial (p; ;s = p; in this case). Ac-
cording to the DeMoivre-Laplace theorem the right-hand side
of the last WD can be approximated by a Gaussian distribu-
tion: A(z,])/(’f) X exp (—(j - ,u,')2/(20?)) / (o','\/ﬂ_), with
mean p; = rp; and variance 6?7 = rpi(1 — p;), where for feed-
back encoders p; is the time average of p; ;.

Due to the symmetry of the Gaussian distribution around
its mean, one sees that after applying the f.o.i. rule (1) all co-
dewords of the turbo—code within the ¢th group have weight
W (i, 1) = 1 + 2u;, while the total number of codewords in this
group is (’f) In case of feed—forward encoders W (i, 1) = i+2Ji
for small and large ¢ and W (3, 1) = i+r for i near to k/2 (which
corresponds to random codes). Hence, the minimum distance
is 1+2J. For feed—back encoders the minimum distance incre-
ases with increasing k and W (i,1) ~ ¢+ r for all ¢ except very
small ones. Codes with these encoders are thus near to ran-
dom codes. The great distinction between values W (3, 1) and
between number of codewords for small and central i results
into a “break” in the performance curves.

Using the proposed WD’s, one can obtain the bounds on
error rate for turbo—codes like union bounds in [2].
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Abstract — The idea of iterative decoding of two—
dimensional systematic convolutional codes — so-
called turbo—codes — is extended to threshold deco-
ding, which is presented in “Soft—In/Soft—Out” form.
The computational complexity of the proposed deco-
der is very low. Surprisingly good simulation results
are shown for the Gaussian channel.

I. PRELIMINARIES
We restrict ourselves to binary data. A convolutional en-

coder with rate R. = k/(k + 1) produces the output bits

zE}’, ,zgkﬂ) at time u = 0,1, 2,.... During the transmissi-
on the noise sequence eg), - ,e(Hl) corrupts the coded bits.

This sequence is statistically independent from digit to digit.
Thus, we receive the sequence 1:( ) = :1:( )eBe( ) 1<i1<k+1,
where @ denotes the modulo-two addition. We assume that
an error has occurred, if egf) =1, and esf) = () otherwise.

For threshold decodmg it 1s important to provide informati-
on about the error symbol eu . The a posteriori log-likelihood
ratio for this symbol can be calculated as L(es,)| (‘))

In ﬁ(:( ):?:Z( )) = 4ﬁg-tz . |y£t)| +L(eu ), where y(') is the mat-

ched filter output associated with the binary value :cu' , Es/Ng

is the signal-to—noise ratio, a is the fading amplitude, and
( ) is the a priori log-likelihood ratio for symbol e,

Following [1], we shall use a special operation H, which
denotes L(v1) B L(v2) = L(v1 @ v2) for log-likelihood ratios of
statistically independent binary random variables v; and v,.

II. SoFT-IN/SoFT-OUT THRESHOLD DECODING
Soft-In threshold decoding is well-known as A Posteriori Pro-
bability (APP) decoding [2]. The objective of Massey’s deco-
der is to maximize the probability P(e(') = fl{Ag')}) that the
error symbol eg), 1 <4 <k, has a certain value £ € {0,1}
under the condition that we have a set {AS»')}, 1<3<J,

of parity checks orthogonal on eg'.). Each parity check Ag-i)

can be calculated as modulo-two sum of egi), a special selec-

tion of error symbols e(a) 1<a<kse S(“a), associated

(o) (k+1)

with the information bits z3”/, and the error symbols e

3,k+1
s'e S;- iR Ua= ‘ 4
bits :c(a’f"'l). The sets S;"a) and S;”Hl) consisting of integers
are depending on the generator polynomials of the code. The
soft output of the decoder can be written as

. Sg-’ *) | associated with the parity check

J

L AP0 = 30— 240 + 4200 1]+ (),
J=1

channel a priori

extrinsic

where .
W =38 38 LB d L),
a=1 ses(i yor) les(o' 1k+1)

The H operation can be approx1mated by sign and minimum
operations. The value 1 — ZA( ) is equal to +1 or —1. Thus,
we need only compare operatlons and additions to calculate
the extrinsic term.

III. ITERATIVE (“TURBO”) DECODING

We can split the soft output into three terms, namely into
the so—called extrinsic information representing the influence
of the error bits orthogonal on the current bit eg'), the soft
output of the channel, and the a priori value L(egi)). If a
priori information about the error bits is available, it is also
used in calculating the weights wi?. Only the extrinsic value
(the information produced by the previous decoder) should
be passed on as new a priori value to the next decoder. The
structure of the codec (with a random interleaver between two
encoders for self-orthogonal codes) corresponds to [3].

IV. SiMuLATION RESULTS
The plots in the Figure show the achieved bit error rates using
up to 20 iterations over a Gaussian channel (code rate = 1/2,
length of interleaver 9990, two component codes with J = 3).
16 B operations and 8 additions are needed per information
bit and iteration for calculating the soft output.

1.0e+00
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ST R
2 1.0e-02 Tmaeoded
E N \‘\
3 VTN T <
5 1.0e-03 = ‘ X ‘ : %

1.0e-04
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The “break” in the curves after enough iterations is the re-
sult of the weight distribution of the used feed—forward com-
ponent codes [4].
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Abstract — The Efficient Reservation Virtual Circuit (or
ERVC) protocol is a novel connection control protocol
designed for constant-rate delay-insensitive traffic in
gigabit networks. In the ERVC protocol, session du-
rations are recorded and capacity is reserved only for
the duration of the session, starting at the time it is
actually needed. The protocol also has the “reserva-
tion ahead” feature, which allows a node to calculate
the time at which the requested capacity will be avail-
able and reserve it in advance, thus avoiding wasteful
repetition of the call setup phase. In addition, the
protocol is robust to link and node failures, and al-
lows soft recovery from processor failures.

I. INTRODUCTION

The ERVC protocol is one of the two candidate protocols that
we are considering for implementation in the 40 Gbit/s ATM-
based fiber-optic Thunder and Lightning network currently
being developed at UCSB. In designing the connection and
flow control algorithms for this network our objectives were
to ensure lossless transmission, efficient utilization of capac-
ity, minimum pre-transmission delay for delay-sensitive traffic,
and packet arrival in correct order. To meet these objectives,
we have proposed the ERVC protocol for constant-rate traf-
fic, and the Ready-to-Go Virtual Circuit (or RGVC ) proto-
col for best-effort traffic and traffic with little delay tolerance.
The RGVC protocol, described in [1], uses back-pressure and
requires buffering at intermediate nodes, whereas the ERVC
protocol, described in [2], uses reservations and requires little
buffering at intermediate nodes.

II. Way THE ERVC PRrROTOCOL ?

In standard reservation schemes (abbreviated SRVC) the ca-
pacity required by a session at an intermediate node is reserved
starting at the time the setup packet arrives at the node. This
is inefficient since the capacity reserved will actually be used
at least one round-trip delay after the arrival of the packet at
the node. This is because the setup packet has to travel from
the intermediate node to the destination, an acknowledgement
has to be sent to the source, and the first data packet of the
session has to travel to the intermediate node. Over long
transmission distances, the round-trip propagation delay may
be comparable to, or even larger than, the holding time of a
session. In particular, if a typical session requests capacity
r bits/sec, and transfers a total of M bits over a distance of
L kilometers, then the maximum percentage of time that the
capacity is efficiently used in a SRVC protocol is

; (1)

M
T

e =
2Lc

w T

ﬁ|§

1Research supported by ARPA under Contract DABT63-93-C-
0039

40

where ¢/n = 5 ps/km is the propagation delay in the fiber.
Typical values of these parameters for the Thunder and Light-
ning network are r = 10 Gbit/s, M = 0.5 Gbit, and L = 3000
km (coast-to-coast communication), which yields e = 0.625.
In contrast, the efficiency factor e for the ERVC protocol can
be as large as e = 1, independently of the parameters r, L,
and M.

The “reservation ahead” feature of the ERVC protocol al-
lows sessions to reserve capacity in advance for use at a later
time. Thus, if capacity is available for a session starting at
a time that is within the delay that the session can tolerate,
the call is accepted on its first attempt. This feature, there-
fore, avoids unnecessarily prolonged call setup phases, reduces
a session’s susceptibility to blocking, and leads to efficient uti-
lization of the available capacity.

ITT. BASIC DESCRIPTION OF THE PROTOCOL

In the ERVC protocol, each network node keeps track of the
utilization profile of each outgoing link, which describes the
residual capacity available on the link as a function of time.
The utilizatio profile is stored as a linked-list of records, and
is updated efficiently. Each intermediate node reserves the
required capacity starting at the time at which this capacity
will actually be used (which is at least one round-trip delay
after the arrival of the setup packet at the node), and for time
equal to the session duration. If the session duration is un-
known, it is treated as infinite, and capacity is reserved for
that session for an unspecified duration (as in standard reser-
vation schemes). If the capacity is not available at the time
requested, the setup packet may make a reservation starting at
the first time the capacity becomes available, if the session can
tolerate the delay. Since, capacity is blocked for other sessions
only for the duration of the call and is available for the remain-
ing time, this allows a considerably greater number of sessions
to be served. It also avoids the wasteful repetition of the call
setup process, because it enables a session to reserve the re-
quired capacity in its first attempt, possibly at a time later
than the requested time. If adequate capacity is available at
every intermediate node, the source eventually recetves an ac-
knowledgement from the destination and begins transmitting
data. If the time at which adequate bandwidth first becomes
available is exceeds the delay tolerance of the session, the call
is blocked and is reattempted later, probably via a different
path. The ERVC protocol requires a pre-transmission delay
at least equal to the round-trip propagation delay between the
source and the destination (as all reservation protocols do).
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Guaranteeing Spatial Coherence in Real-time Multicasting
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Abstract — We introduce the spatial coherence
quality of service requirement for real-time point-
to-multipoint communications in distributed systems.
The notions of multicast end-to-end delay and global
jitter are defined and their relationships with the spa-
tial coherence are described.

) I. Introduction )
As there is an increasing effort among communications system

designers to provide communications applications with more
and more elaborate services, coming to a real-time multicast-
ing application in which a message sent from a source to a set
of sinks is required to meet specified time and geographical
(spatial) constraints, the underlying communications systems
should allow spatial coherence quality of service requirement.
We improve the steadiness and tightness metrics, defined as
functions of maximum and minimum individual point-to-point
delays [1], to provide spatial coherence guarantee. The next
section introduces the notions of multicast end-to-end delay
and global jitter and then gives their relationships to the spa-
tial coherence. In section III, three deterministic schedul-
ing policies for point-to-point real-time communications are
graded with respect to their suitability to spatial coherence.

II. Multicast End-to-end Delay, Global Jitter

and Spatial Coherence
Given a data packet transmitted over a multipoint connection,

the multicast end-to-end delay is defined as an N-dimensional
vector d = (dy,dz, ..., dn), where N is the number of elements
in the recipient set, and d; is the ¢th individual end-to-end
delay. The scalar value of the multicast end-to-end delay is

derived form the modulus of vector d as d = I S (di)2.

It is a scalar function of variables dy, ds, ..., dy. The infinites-
imal variation in the value of d is then derived as :

1 = d
Sd=—9S "% 54
\/N; dF

In the above equation, the term ddj of the righthand part
is the individual delay jitter for sink %k (ji). The lefthand
part, dd, is the global delay jitter that takes into account all
the individual delay jitters of the multicast connection. It
will further denoted as js. Equation 1 is then rewritten as
js = # Eivzl if.jk. The spatial coherence is defined as a
measure of the skew among the time instants at which a mes-
sage transmitted over a real-time multicast connection is re-
ceived at the different sinks. The spatial coherence is achieved
when individual end-to-end delays have an equal value, in
which case fracdr,d = 1 for all k, 1 < k < N. Hence, in
order to guarantee spatial coherence, the ratio fracdy ,d must
be kept as close a possible to unity. In other words, the fol-
lowing double inequality should hold :

1-cs®cryg

1)

(2)

1This work was done in the framework of the IMAG project
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Where ( is a positive scalar very close to zero. From the above
definition of the global jitter, and imposing a bound Js on it,
we derive equation 3.

N N
1 . 1 .
\/_ﬁ(l_C);J*SJSSﬁ(1+C)kZ=1]k (3)

Assuming that ¢ is close to zero, the above equation sim-
plifies to:

N
JsVN = Z]k

k=1

(4)

From which the bounds on individual delay jitters can be
solved.

ITI. Deterministic Scheduling Policies
We consider three deterministic scheduling policies for point-
to-point real-time communications : 1)- the Earliest Due Date
for Jitter (EDD-J) (2], 2)- the Stop & Go (S & G) [3] and,
3)- the Hierarchical Round Robbin (®]em HRR) [4]. Each
mechanism is graded, in the range 0 to 3, according to three
criteria: a)- the suitability to guarantee throughput or bit
rate, b)- the suitability to guarantee end-to-end-delay and, c)-
the suitability to spatial coherence as a result of the previous
two criteria. The scores are presented in the following table.

‘Throuput | Delay | Spatial Coherence
EDD-J 1 3 3
S& G 3 3 3
HRR 3 0 1

IV. Conclusion

From three examples of real-time point-to-point scheduling
techniques, we showed how spatial coherence is achievable
form the observance of individual end-to-end delay and jitter
bounds. Thus the research results in real-time point-to-point
communications can easily be extended to address the issue
of spatial coherence quality of service requirement of real-time
mult-casting applications. The case of statistical traffics and
statistical multicast real-time requirements can be dealt with
in an approach similar to the one we used for deterministic
traffics and requirements.
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Abstract — Peakedness was originally developed by
teletraffic engineers as a tool for characterizing call
arrival processes at a trunk group. We generalize
the peakedness theory to include a class of stochas-
tic models used in studies of high-speed networks and
apply it to the approximate analysis of a statistical
multiplexer.

I. INTRODUCTION
In networks based on the Asynchronous Transfer Mode
(ATM), information is transmitted asynchronously over high-
speed links in the form of 53-byte units called cells. Accurate
traffic characterization is a crucial step in performing network
resource allocation and dimensioning.

1I. GENERALIZED ARRIVAL PROCESS
Define a rate process {R:,t > 0} to be a strictly stationary
random process with finite, nontrivial first two moment mea-
sures. The process {R:,t > 0} is to be understood in the
generalized function sense with the interpretation that R.dt
represents the amount of work arriving in the infinitesimal in-
terval [t,t+dt). The generalized arrival processis then defined

by
t
Nt-:/ Rq—d‘r,
0

where N; represents the amount of work arriving in the inter-
val (0, t].
The standard arrival process defined as a stationary point

1)

process is a special case with

Rt=f:b,- §(t—To),

i=1

(2)

where b; is the number of arrivals at the ith arrival epoch, T;,
and §(t) is the Dirac delta function. Another special case is
the discrete-level fluid process with

o ‘- ‘T,,
Re = Zf, rect (m) 5
i=1

1

(3)

where f; is the fluid flow rate, T; is the epoch of the ith tran-
sition and rect(t) = u(t) — u(t — 1), where u(2) is the unit step
function.

1II. GENERALIZED PEAKEDNESS
We introduce a concept of peakedness for a general arrival
process as defined by (1). The arrival process is offered to an
infinite server system which is represented by an i.i.d. process,
{D:,t > 0}, with marginal cdf F. Define

t
S¢=/ 1{Du>t_u}Ru&u, (4)
0
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with the following interpretation: In the interval [u,z + du),
R.du units of work are offered to a new server, introduced at
time u, which removes this work from the system after a du-
ration D.. Then S; represents the amount of work present in
the system at time £. The peakedness functional with respect
to the service time cdf F is defined by

Var[S;]

z[F] = lim B[S

t—00

(5)

For the case of an orderly point process, the definitions (4)
and (5) reduce to the standard concept of peakedness.

The following result of Eckberg [1] extends to our general-
ized notion of peakedness:

2[Fl=1+ -ﬁ— / N [k(z) — A6(z)]F*(z)dz. (6)

Here, F* is the autocorrelation function of F¢ = 1 — F,
pt = fooo F%(z)dz is the mean service time, A = E[R;] is
the mean arrival rate, and k(7) = Cov(R:4r, Rt) is the co-
variance function of the rate process.

IV. APPLICATION
The generalized peakedness can be obtained in closed form
via (6) for a large class of stochastic traffic models, including
the popular Markov modulated fluid models. In particular,
the peakedness function of a Markov on-off fluid with peak
rate 7, mean on time ! and mean off time a~! with respect
to constant service time distribution is given by

Zeonst(1) = (azTrﬁﬁ)‘;[a + B +p(l - e—(a+ﬁ)/#)]‘

(M
Peakedness can also be estimated empirically through mea-
surements of an actual traffic stream and then used to con-
struct a stochastic traffic model.

Lee and Mark [2] propose a method for approximating a
general arrival process with a more computationally tractable
superposition of two types of on-off Markov fluid sources by
matching central moments of the rate process R: and an in-
dex of dispersion measure. Since the peakedness function con-
tains strictly more information about the arrival process than
the index of dispersion, a more accurate traffic characteriza-
tion can be achieved by using the peakedness function (7) to
perform the match. We demonstrate the effectiveness of our
approach with an application to the analysis of a statistical
multiplexer.
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Abstract — Run-time fault detection in communica-
tion protocols is essential to detect faults that cannot
be detected during the testing phase. In this paper,
we use a polynomial-based signature function to de-
tect run-time faults in communication protocols.

I. INTRODUCTION

Signature Analysis [2] and FSM methods [4, 1] are two pop-
ular methods that are used to verify the control flow of pro-
grams. Run-time fault detection in communication protocols
is essential to detect faults that arise due to coding defects,
memory problems and external disturbances. In this paper,
we summarize the results presented in [3]. We propose a new
signature function which is based on polynomials, to detect
run-time faults in communication protocols. Every state has
a signature which represents the signature of all paths leading
to that state and this is stored in a static signature table. The
run-time path is transformed into a number (signature) using
the signature function and compared with the static signature
table for its correctness. While the FSM table has at least two
dimensions, the static signature table has only one dimension.

II. SIGNATURE GENERATION

Let A = (Q,Z,6)be a FSM with a state Sy such that it has
a predefined signature equal to zero and all the other states
are reachable from Sp. The signature function is a polyno-
mial with the values of states and events as coefficients and
maps every path beginning at state Sy into a value from an
algebraic field F. For any two paths C; and C,, the signa-
ture function must satisfy: Ip < 1; Prob[Signature(Cy)
Signature(C,)|C1 # C2) < p, where p is defined as the alias-
ing probability of the signature function. We use three kinds
of signature depending on the availability of the state and
event information. They are full-path, event, and state
signatures. The polynomials associated with these signatures
are given below. The signature is computed by evaluating the
polynomial at a given point zo.

Full-path: Pc(z) =Y 7} (siz®"™) 4 ;02(n=0-1) 5

State: Pe(z) = z?____ol $iz™ " s,

Event: Pg(z) = ::01 et 1

where: s;: state value, e;: event value, n: length of the
state path and z: a number from a given Galois field F.
The following theorem gives an upper bound on the aliasing
probability of the signature function.

Theorem 1 Prob[Signature(Cy)=Signature(C;) | C, # C;]
_ 1

=T

Corollary 1 The probability that an illegal path is undetected
is equal to ]—11;[

OThis work was partially supported by the Swiss PTT project
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Sg: Signature before @ S: state value
a Sg: Signature before
entering the state entering the
FSM BEvent aesignment State-Event sesignment

Fig. 1: Event-State assignment example.

When many paths lead to the same state, they are called par-
allel paths. Parallel paths should result in the same signature.
This will reduce the complexity of signature verification. This
constraint is used in generating the system of linear equations
which can be used to assign values to the states and events
(state-event assignment problem) [3].

III. EXAMPLE
We explain the fault detection technique using the FSM shown

in Fig. 1. Solving the state-event assignment problem for & =
2, we have S; =1, S, =2, S5 = 3, Si=4,a=1b=2 c=
—21, and d = —7. The initial state (S;) has a signature value
equal to 0. The signature is computed for £ = 2. Consider
the path 5165S4cS2aSs. The step-wise computation of full-
path signature is shown in Tab. 1.

Path Computation Signature
S1b (0x2+1)*2+2 4
S516Ssc ((4%x2+4)x2+(-21)) 3
Sle.;cS;a ((3*2+2)*2+1) 17

Tab. 1: Full-path signature

IV. CoNcLusION
We have presented a signature-based method for detecting
run-time faults in communication protocols. This technique
has been applied to detect faults in protocols like ABP and
TP4 [3].
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Sporadic Information Sources
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Abstract — Message arrivals encountered in digital
transmission over most real communication channels
are not independent but appear in clusters. We pro-
pose a model of such a bursty K—ary source using a
Markov chain with two states. It is shown that the
protocol information of this sporadic source can be
drastically reduced on the one hand by not encoding
intermessage information (e.g., the starting point of
a packet) and on the other hand by buffering and re-
ordering messages. Trade—offs between reduced pro-
tocol information and message delays are also consid-
ered.

SUMMARY
Messages such as commands, inquiries, file transmissions, and
the like, traveling through a network, are extremely bursty. A
model of a bursty K—ary source using a Markov chain with
two states “quite” (or “idle”) and “busy” (sometimes also
called “active”) is proposed as a sufficiently realistic model
for many such sources. In the “quiet” state, the source trans-
mits no (message) information, while in the “active” state,
the source acts as a (K — 1)—ary discrete memoryless source
(DMS). The transition probabilities between states describe
the sporadic nature of the source. Let p and g denote the
probability of changing from the quiet to the busy state and
from the busy to the quiet state, respectively. With this, the
information rate in the steady-state, defined as the entropy
per source letter [bits/time unit], U, can be calculated to be

p p q
Ho(U) = log(K —1) +——h(q) + ——h 1
(U) p+a 8( ), P+ @+ (pl()
message information  protocol information
where

h(p) = —plogp — (1 - p)log(1 - p)
is the binary entropy function.

Since each message symbol contains log(K — 1) bits of in-
formation and since the source is producing message symbols
during a fraction p/(p + g) of time, the first term on the right
side of (1) may be interpreted as the entropy of the messages.
Similarly, the second term may be viewed as the entropy in
the message length and the third term as the entropy in the
length of the quiet periods. The information in the source
output consists of two parts: a message part and a protocol
part. Although such a separation seems reasonable intuitively,
it is by no means entirely apparent that message information
and protocol information can be separated completely from
one another and considered independently. We show that a
significant fraction of the channel capacity must be used for
protocol information when either the expected message length
is short (g > 0), or the quiet sequences are much longer than
the message sequences (g/p > 1), or the signalling alphabet
is small.

Whereas message information must generally be encoded
losslessly, it is usually not necessary to encode all protocol in-
formation. For instance in a packet—switching network, mes-
sages are generally delayed by varying amounts in passing
through the network in different ways and their arrival or-
der may be changed. One can save protocol information by
not resolving intermessage time delays. If we are not inter-
ested in “full-reconstructability” of the entire source output
including the messages in their original order and/or the exact
length of quiet periods, then we can use less than an average
of k(q) = H(L)/E(L) bits per message symbol to indicate
the length L of the messages and/or less than ¢/p - h(p) bits
per message symbol to indicate the lengths of the quiet peri-
ods. It is precisely the possibility of reordering and buffering
the messages that permits a decrease in the amount of pro-
tocol information to be transmitted. We present both coding
strategies that maintain messages in their original order going
through the network and coding strategies that ignore mes-
sage order. Unfortunately, the reduction in protocol informa-
tion by the latter strategies is gained mostly at the cost of an
enlarged message delay. One of the most important perfor-
mance measures, however, is the average (or the maximum)
delay required to deliver a message from the origin to the
destination. We analyze the trade-off between the maximum
tolerable delay and the amount of protocol information that
must be sent. It is shown that the minimal necessary protocol
information required to encode the message length decreases
exponentially fast with increasing delay. Examples are given
to illustrate and to compare the various strategies. Finally,
certain generalizations of the concept of sporadic sources are
devised for some related applications.
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An Analysis Approach for Cell Loss Rate of Shared Buffer ATM Switching
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Abstract — A novel approach is presented for an-
alyzing cell loss rate of shared buffer ATM switching. It
provides a new means to solve problems in more complex
queueing system. It is an accurate alogrithm instead of
conventional methods by employing a one-step transition
matrix.

SUMMARY

ATM is a promising tansport and switch technique for
a future B-ISDN. One of major areas under study of ATM
switching system is switch architectures. Among various
kinds of ATM architectures, shared buffer ATM switching
is the best choice in terms of cell loss rate, throughput and
swithching delay[1].

The relation between cell loss rate and shared buffer
size is analyzed in some literatures. Those results are not
accurate because the number of total cells that arrive at
each time slot destined for the individual output ports are
not independent. Since the total number of cells arriving
at each time slot is no larger than switch input ports, those
cells do not switch for the other output ports, if some cells
destine for some certain output ports. The negative cor-
relation causes the sum of the queues for the output ports
to be stochastically smaller than what this sum would be
were the queues to be independent. Based on this opinion,
an accurate approach is developed for analysis of cell loss
rate in shard buffer ATM switch. Outline of this analytic
method is addressed as follows.

The shared buffer switch has N input ports and N out-
put ports. At each time slot, cells arrive at each input link
according to a Bernoulli process with probability p < 1.
Each cell is uniformly to be destined for any of the N out-
put ports. And, at each input ports, successive cells that
do arrive are independently destined for their respective
output ports.

Let a; represent the probability of ¢ arriving cells to
the switching at each time slot. Based on the assumption
above, a; is a binomail -distributed. That is

a; = Cy p'(1 - PN

It is assumed that the state of Markov chain is respre-
sented by the number of cells in the switching. Then the
probabilty transition matrix of arriving cells regardless of
leaving cells is

ay ap- an
ao a - an
P, = ..

At each time slot, the number of cells which are trans-
mitted to output links is that of output ports which have
queueing cells. Let b,; be the probability for i output
ports which have queueing cells when the total number of
cells is n in the switching. Therefore, the following equa-
tion can be derived by using Markov chain. That is

i—1 . .
3 0Ly (-1 5y
bni = =D

The leaving cells probability transitoin matrix regard-
less of arriving cells is

N!
" NA(N —d)!

S i
b11
b2y bsy
P, =
bvy  bnn-1 <o baa
by byn-1 - bwa

From the analyzing above, we can derive the realis-
tic probability transtion matrix for the switching system.
That is

P=P P,

In order to solve the steady probability from this ma-
trix, let the biggest number of state be large enough such
that the difference, due to the finite state instead of the
infinite state, is negligibly small, then the steady proba-
bility distribution can be easily obtained by formal ways.
That is the accurate relation between cell loss rate and
buffer size in the switching.
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A Scheme to Adopt Dynamic Selection of Error-Correcting Codes in
Hybrid ARQ Protocol
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Abstract — Automatic Repeat_Request(ARQ) has been widely used for
its high reliability and convenience in implementation. But its low performance
is shown when channel is in noisy state. This paper presents an adaptive error
control scheme with combination of FEC and ARQ. An encoder and a decoder
for large constraint length convolution codes are constructed by TMS320E25
microprocessors to implement error control. Based on channel condition, the
system can modify diffuse convolution codes constraint length automatically.
Such an adaptive error control system combined with an ARQ system based on
HDLC protocol is efficient to transmit data in high speed under bad radio
channels.

I .FEC/ARQ ApAPTIVE ERROR CONTROL MODE

The adaptive error control system block diagram is shown in Fig. 1, where the
CCU(Communication Control Unit) implements HDLC protocol and system
control.

TxD

Mg
EmUOoxg

[ o o

Fig. 1 System block diagram
Assuming the employed codes are denoted as C;. Cy. - Cg, where C, .
Cy. Cg are self-orthogonal diffuse convolution codes (2,1,4X+2), X is
scaled as 32, 64, 128, 256, 512 and C, canbe cxpressed as CRC implying

that the transmitting data is encoded only by cyclic redundant check bits and
ARQ protocol is employed. The Cy. C3. -, Cg can comect 2X bits burst
errors and 2 bits random errors. The rate is 0.5 only, and the decoding operation
brings about delay. With the growth of the diffuse length, the decoding delay and
the protection bits will rise, and the throughput will decrease. Thus, the focus
problem is to determine dynamically which of the available codes to achieve the
highest throughput for each channel status.

The system uses two frame structures: one is named as special frame, Fs, which
begins with a special frame flag OFFH, followed by diffuse length index; the other
is named as data frame, Fy, which begins with a data frame flag OOH, and

followed by encoded data

In the scheme, the channel condition is indicated by the probability of error frame.
The procedure of the scheme can be described briefly as follow: suppose now that
the Cy is used and the data packet(raw data) length is L bits, the transmitter
counts the successful transmission frames per M frames(including the
retransmission frames, but excluding Fs frames), let the result is denoted as V, if V
< N(N is threshold), then the channel is in worse condition, and the transmitter
attempt to adopt Ck +1 and transmits a Fs frame to the receiver, then makes

statistics of the successful transmission from the beginning; if N< V<M, Ck is
suitable for the channel condition; if V=M, the transmitter checks whether or not

the 3 x M transmission is successful without retransmission continuously, if not,
Cy can be employed without changing, else the transmitter will attempt to adopt

Cy.1 and transmits a Fs frame to the receiver. In this way, the code can be
selected dynamically to achieve the highest throughput.

. THE FEC BOARD AND OPERATION PRINCIPLE
The encoding and decoding is accomplished by a single board(FEC board) which
contains two TMS320E25 and peripheral interface unit. Because the algorithm is
executed by software, so the circuit is simple, the board size is small and it is
convenient to change code from one to another. The 416 EPROM on chip is
sufficient to contain five subroutines corresponding to the available codes

Cy. . Gy When CCU interrupts FEC board and then sends a code index to

FEC board, the TMS320E25 executes the corresponding subroutine. The ARQ
protocol is accomplished by CCU, simultancously, the CCU makes statistics of
successful frame and takes a selection of codes, and then conveys the index
number of the selected code to FEC board.

The convolution code synchronization is achieved by use of frame synchronization.
The Barker(11) is used as synchronization code, and five Barker(11) construct a
synchronization code group to ensure at least one of the five codes not disturbed.
The TMS320E25 on the FEC board makes correlation calculation to decide
whether the receiving frame is in synchronization or not. Followed the
synchronization code group, a NOT Barker(11) is arranged to indicate the end of
synchronization head, the continued is encoded data. At the last part in
transmitting frame, several protection bits is added to ensure the data remained in
buffer(corresponding to shifi-registers in hardware design) to be decoded
completely .

M. DiscUSSION AND TESTING RESULT

The system performance depends on the parameters L. M. N. With the growth
of L, the probability of frame failing transmission will risc on fading channel
condition. The larger M is , the slower the system sensitivity to channel condition
is. The larger N(N < M) is, the more frequent code adjustment is. By practices, we
have obtained some valuable data about the optimal parameters over mobile
channel.

For testify the whole efficiency of this system, we make some practices on the
following condition: Re(channel data speed)=32Kb/s, L=1024, M=5, N=3. Let
burst error probability be denoted as P, Pr=t /2T, where T : burst error lasting
time, T : burst error appearing period. Let Pg express probability of random error
and P=P+ Pg express probability of burst and random error combination. We
transmitted a file sized 1920K bits in several simulative channels and obtained
some practice data listing in Table 1, Table 2. and Table 3. In the following
tables, T expresses the consumed time in ARQ mode without error-correcting; T,
expresses the consumed time in the mode described in this paper. From the result,
it can be seen that the system performance is equivalent to ARQ system on
unmixed burst error channel, while on other feature channels, the system is much
superior to ARQ system .

Tabel 1 T=1S Table 2
T Pr Tl(s) Tz(s) Pg Tl(s) T2(s)
2 1x103 | 80 80 1x104| 90 91
S |asx10-3] 82 83 Lx10-3] 375 | 141
10 | 5.103] 8 83 sx10-3| 827 | 166
30 |1s5x19-2| 85 87 1x10-2| = 170
Table3 T=1S
Py P, Ty T,(s)
1x1073 1x1074 % 99
1% 1073 1x 1073 438 154
25x10°3 1% 1073 557 172
5x1073 1x1072 o« 188
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Importance Sampling for TCM Scheme
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I. INTRODUCTION
Some error probability estimation methods of a trellis-coded
modulation (TCM) scheme using importance sampling have
been proposed [1]. However, these methods are not suitable
for an additive non-Gaussian noise channel case. The main
problem is how to design the probability density function in
importance sampling. We propose a new design method of

the probability density function related to the Bhattacharyya
bound.

II. PROPOSED METHOD
Let 8; and 82 be transmitted signals, and » be the received
signal. Now, we consider a decision system which decides that
the transmitted signal is whether 8; or 82 from the received
signal ». When the transmitted signal is 8;, the indicator
function of the error region ®(-) is expressed as

_ {1 frls) < £(r]s2)
q’(”‘{ 0, f(rls) > flrlsa) 1)

where f(-|-) is the conditional probability density function.
The ideal probability density function for importance sam-
pling is propotional to ®(r)f(»|s1). The bound of the func-
tion ®(-) is very complex for most conditional probability
density function cases. In Bhattacharyya bound, we evalu-
ate the error probability from the upper bound of ®(-), that

s, \/f 7‘|32)/f(1'|.91 The proposed probability density func-
tlon F*(r|s1) in importance sampling is designed almost the
same idea with the Bhattacharyya bound and given by

I*(rls1) o< / f(r]81)f(r]s2). (2)

When the noise is an AWGN, the probability density function
of the proposed method is reduced to that of mean translation
method in [3]. The detail of the proposed method isin Ref. [5].

ITI. NuMERICAL EXAMPLE

A. Noise MobpEL

As an additive non-Gaussian noise model in the examle, an
additive combination of an AWGN of variance az and an im-
pulsive noise of Gaussian distribution of variance ¢? which
is observed with the probablity (< 1) per symbol interval
is used [4]. By taking the convolution of the two probabil-
ity density functions, the probability density function of the
additive non-Gaussian noise is rewritten as

_ 11—y 2’ +9°
f(zx y) - 21‘_0_2 exp{ 20_3
22 +y2

i}
* 2«(03+a?>e""{‘2<&z‘+a?>}' (3)

Since it is difficult to make random numbers following the
probability density function designed by the proposed method,
we approximate the probability density function f*(-|-) de-
signed by the proposed method.

B. SIMULATION RESULTS
The encoder used in the example is (9, 2, 4) Ungerboeck code
in [2]. As noise parameters, vy = 0.01 and o; = 100, were used.
We selected 50 error events for the simulation based on the
measure of the smaller Bhattacharyya distance. The number
of simulation runs per error event were 1000. To compare with
the proposed method, the ordinary Monte-Carlo simulation
was tried. It was continued till 200 error bits were observed.
Figure 1 shows BER and variance performance. When
BER < 107*, the proposed method approximates more than
95% of bit error rate of the ordinary Monte-Carlo method.
The necessary CPU time of the proposed method is about
1/85 at BER of 107®. The variance of the simulation result
of the proposed method is almost half of that of the ordinary
Monte-Carlo method for all E4/No. Under the condition of
same variance, the reduction of simulation time of the pro-
posed method is estimated about 1/170 at BER of 107,
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Fig. 1: BER and variance performance.
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BRM sequence generators based on the field GF(2")
for DSP implementations

Sang-Jin Lee Seung-Cheol Goh! Kwang-Jo Kim Dai-Ki Lee

Electronics and Telecommunications Research Institute, 161 Kajong-Dong, Yusong-Gu, Taejon, 305-350, Korea

Abstract —  This paper describes the extended
LFSR(ELFSR) and the extended BRM(EBRM)
based on the field GF(2"). We claim that those pre-
sented generators are efficient and suitable for S/W
implementation. We also claim that the EBRM can
be used as a good non-linear logic for stream cipher
systems.

I. INTRODUCTION

A binary rate multiplier (BRM) sequence generator, consisting
of two linear feedback shift registers(LFSRs) of length m and
n respectively, has cryptographically good properties[1]. Un-
der some constraints, it produces binary sequences of period
(2m—1)(2"—1) and linear complexity m(2"—1). The LFSR
is well known to have good properties[2], however, it is not
suitable for DSP implementation.

In this paper, we propose the extended LFSR(ELFSR)
based on the field GF(2%), which can be efliciently and eas-
ily implemented by the general purposed DSPs. And then, we
present the extended BRM(EBRM) sequence generator, which
consists of two ELFSRs of length m and n respectively and
based on the GF(28). It produces byte scquences of period
(28 —~1)(2%" 1) and linear complexity m(2*"—1).

II. THE ExTENDED LFSRs
An ELFSR consists of m memory cells, which together form
the state (so, S1,+*, Sm—1) of the registers. The function f(z)
is mapping of {GF(2™)}™ to GF(2").
f@)=co®(c1®02) ® (c2®22) @ -+ B(em-108m—1) Bz

(C0®SO) (3} (Cl®sl) H---D (C1rl—l®3771—1)

&) Ci Cm—{1

output

S0 S « s .

S =1

Fig 1. An ELFSR: @ and ® denote the operations of addition and
multiplication, respectively, in the ground field GF(2").

Property. The period of an ELFSR over GF(2") with a prim-
itive polynomial f(z) of degree m is 2™"—1.

If we denote « and B in GF(2") by o = (1,92, ++,¥n) and
B = (21,22, +, zn), then the addition of two elements is de-
fined by o @ f = (y1Vz1,¥2V22, -+, ynVzy), where V means
the XOR of two binary integers. Hence the operation € can
be simply computed by the bitwise XOR of two binary blocks.
However, in general, it is not easy to compute the multipli-
cation of two elements in GF(2"). We adopt the method of
multiplication introduced in [3].

Definition. A polynomial over GF(2") is simple provided that
all of its coellicients but the constant term are either 0 or 1.

le-mail: goh@dingo.etri.ve.kr

Algorithm 1: The ELFSR

Input. A simple primitive polynomial f(z) of degree m
and two tables defined by the preprocessing. Let
c[k] be the coeflicients of f(x) for all 0 < k < m—1

Step 1. For k = 0,.--,m—1, initialize s[k] by a random
byte.

Step 2. Compute v = ¢[0]®s[0].

Step 3. Tor k=1,---,m—1,if ¢[k] is 1 then t = t@®s[k].

Step 4. For k=1,---,m—1, set s[k] = s[k—1]. And then,
set s[0] = t.

Step 5. Repeat Step 2 - Step 4 to produce sufficiently

many random bytes.

ITI. THE EXTENDED BRM
Now we present an extended BRM sequence generator, which
consists of two extended LI'SRs of length m and n respec-
tively and based on the G F(2%). It produces byte sequences
of period (28™—1)(2°"—1) and linear complexity m(2*"—1).

Algorithm 2: The extended BRM

Input. Two extended LFSRs SR1 and SR2 of length m,
n respectively.

Step 1. Initialize all arrays of two ELFSRs by random
bytes.

Step 2. At time = t, the two LI'SRs are both clocked

Step 3. If the output of SR1 is odd, SR2 is then clocked
one more time.

Step 4. Repeat Step 2 — Step 3 to produce sufficiently

large number of random bytes.

IV. CoNCLUDING REMARKS

In this paper, we proposed the ELFSR based on the field
GF(2"), which can be efficiently and easily implemented by
general purposed DSPs. And then, we presented the EBRM
sequence generator, which consists of two ELFSRs of length
m and n respectively and based on the GF(2%) so efficiently
implemented by DSPs. We are now examining the security
and efficiency of the proposed generators.
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Shift Register Synthesis For Multiplicative Inversion Over GF(2™)

M. A. Hasan!
Elect. & Comp. Eng. Dept., Univ. of Waterloo, Waterloo, Ontario, Canada

I. SuMMARY

Galois or finite fields have applications in cryptography and
coding theory. For example, both encoding and decoding of
Reed-Solomon codes require computations in the field over
which the code is defined. Among the different arithmetic
operations in finite fields, multiplicative inversion (hereafter
called simply inversion) has been identified as the most complhi-
cated operation. Recently, several approaches have been made
to compute the inverse efficiently. The approaches which have
been given considerable attention in the literature are based
on either Euclid’s algorithm [1], or Fermat’s theorem [2] or
solution of a set of linear equations [3]. The latter approach
is used in our present work to compute inverses.

Let f(z) = Y fiz* be a monic irreducible polynomial of

1=0
degree m over GF(2) so that GF(2™) = GF(2)[z]/f(z). Let
o be an element of GF(2™) and satisfy f(o) = 0. GF(2™)
can be viewed as a vector space of dimension m over GF(2)
and the canonicalbasis (1, a, ---, ™ ') is a vector A over
GF(2™). Let M = [M; ;] with

o) firinn 0Zi+i<m—1
M‘*’“{ 0 m<i4+35<2m—2. (1)

Then B = AM is the vector of the triangular basis corre-
sponding to the canonical basis [4]. Any element ¢ €GF(2™)
can be written uniquely as ¢ = ¢4 AT = cg BT, where c4 and
cp being the vectors of coordinates of ¢ with respect to the
canonical and triangular bases, respectively.

Let a be any nonzero element of GF(2™) and b be the
inverse of a. Then it can be shown that

m~1

28i+j (b4); = 6jm—1 3=0,1,---,m -1, (2

=0

where §;,; is the Kronecker delta function which is equal to 1
when 7 = j and 0 otherwise, and

(em), 1=0,1,---,m—1

8 = m—1 (3)
Zsj+;_mfj i=mm+1,--,2m — 2.
j=0

Let b = b — a™. Then it can also be shown that

m~1 $i4m J=0,1,.--,m—2
S sits (ha); = | )
i=o st i=m-—1,

where sj_,_m = $j+m + 1. Now the shift register synthesis
algorithm of [5] can be used to solve (4) and hence to compute
the inverse of a.

While the coordinates of a are taken with respect to the
triangular basis, those of b are obtained with respect to the
canonical basis. The use of these two bases has been exploited

1This work was supported by an NSERC Research Grant

to realize efficient finite field arithmetic operations [4]. A basis
change, if required, can however be performed using simple
linear feed-back and feed-forward shift registers.

The area-time complexity for the inverter is O(m?logm).
For an arbitrary field GF(2™) the inverter has the least cir-
cuit complexity compared to the recently proposed ones, for
example, [1], [2] and [3].
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On the Probability of Undetected Error and the Computational
Complexity to Detect an Error for Iterated Codes

Toshihisa NISHIJIMA, and Shigeichi HIRASAWA

Abstract —
asymptotic capabilities of iterated codes used as

We discuss on practical and

error detecting codes. Throughout this paper,
we assume that the codes are the binary linear
block codes, and channel, the binary symmetric
channel with cross-over probability e.

I. ITERATED CODES

L et ® be the direct product, then (No, Kp) it-
erated codes C’}s) are constructed by ¢; ® ca ®
.-+ ® cs, where ¢; is the ¢-th stage (n;,k;) code,
and integer s > 2. The method for detecting any
errors is the same method for correcting any er-
rors of C’}s). The decoding of the component code
is only to detect any errors. If all syndrome of all
component codes are zeros, the received sequence
of length No is regarded as a transmitted code-
word of C'l(-s) and is accepted by the receiver. Un-
der the below condition, C’}s)
bad codes.

are asymptotically

Lemma 1 For s — oo, any € > 0, and some

J < 1,7, the necessary and sufficient condition to

construct C’}S) whose code rate Rp, 0 < Rp <1

is given by ]% — 1] < € where R; = [[j_; 7,
. K

R; =I]_, 7, and Rp = -]3\‘%

I[I. EsTIMATION OF ITERATED CODES

Definition 1 We define the complexity of the op-
eration required to detect an error by the product
of the total number of shifts and the number of
stages of the shift register to divide the polyno-
mial of a received sequence.
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nishi@nishi.is.hosei.ac.jp

°S. Hirasawa is with Department of Industrial Engineer-
ing and Management, School of Science and Engineering,
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(s)

Theorem 1 Let X}’ be the complexity of the op-

eration required to detect an error for C'}s). Then,

min (No — Ko)< X(Is)

Nmax = Max(ny, ng, -

Yy N )

< Nmax (No — Ko), where
*y Tls), and Nmin = min(_nl,
112’ ..

Corollary 1 For C’}s) as 0 < Rp < 1, and s —

o0, we have O(Np) < ,\'(Is) < O(N3).

Let P}s) (¢) be the probability of undetected er-
ror for C}S).
C}s) constructed by direct product of s codes ¢;
whose n; is very small, comparing with Ngp, we

Then, by utilizing the structure of

are able to calculate the exact value of .P[(S)(a).

Theorem 2 By iterating the recurrent calcula-
tion until the stage s — 1, finally we can have
PP(e) = [PE D (emn)]b = (1 = €5m1)™, where
-1 . ; i
PP (egmr) = Y02g Agied (1= eam)™ 77, A,
is the number of codewords of Hamming weight
j in code c¢;, €51 is the average error probabil-
ity per bit at stage s — 1, Ny= ngks_1---kq, and
Ls: ks—lks—-T ' ‘k1~

Corollary 2 For 0 < Rp < 1, and s — oo,
P (e,)— 0.

III. CONCLUSION

The complexity of that for C'}s) is more simple
than that for the conventional single stage codes
c under the same probability of undetected error,
code length, and code rate. Also, the complexity
of that for C}s) asymptotically is more simple than
that for c.

The exact value of the probability of undetected
error for C}s) can be always calculated. Further-
more, it is explicitly shown that the value of that

for C’}s) converges to zero for s — o0.
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Wavefront Decoding of Trellis Codes

Torbjorn Larsson
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Abstract - A novel reduced-complexity trellis
decoding algorithm is described. The new algorithm,
called Wavefront Decoding (WD), avoids the through-
put bottleneck caused by metric and state-infor-
mation feedback, which characterizes previously
known breadth-first decoding algorithms. The error
performance of WD for trellis-coded 8PSK on AWGN
and Rayleigh fading channels is investigated by
simulation. The results indicate that for a given
number of survivor paths, the performance of WD is
comparable, although necessarily inferior, to that of
the M-algorithm. However, in contrast to the M-
algorithm, WD exhibits a high degree of temporal
parallelism, rendering it suitable for high speed
applications.

I. INTRODUCTION

The well-known M-algorithm [1] [2] is optimal in the
sense that it minimizes, for any given number of survivor
paths, the probability of rejecting the transmitted path [3].
However, the M-algorithm suffers from two structural
deficiencies. First, the cost of survivor selection in terms of
cycle and gate count will always be high. Second, due to the
existence of a feedback loop in the decoder, in which the
metrics and states of recursionn are fed back to be used in
recursion n+1, the M-algorithm is incapable of simul-
taneously processing paths over several trellis stages. This
excludes the use of the M-algorithm in high-speed
applications, which require extensive pipelining. In this
paper, we show that by generalizing the concept of
breadth-first decoding, the feedback loop in the decoder
may in fact be broken up to support pipelining over several
trellis stages. Moreover, we find that for the decoding of
short blocks, the survivor selection can be carried out at a
cost significantly lower than in the M-algorithm. The price
paid is a modest deterioration of error performance.

II. WAVEFRONT DECODING

Consider first a breadth-first trellis decoder operating
with C search paths selected from C state-classes. To
proceed forward, the decoder first stores all successors of
the old survivor paths in C lists associated with the C
state-classes. Next, the best path from each list is extracted
to become a new survivor. We shall refer to a group of C
paths that propagate through the trellis in this fashion as a
wavefront. Hence, in our notation the reduced-state
sequence decoder (RSSD) considered in [3] and by several
other authors is a single wavefront decoder. Consider next
a decoder operating with 2C search paths divided in two
wavefronts, each one consisting of C paths. The two
wavefronts walk in file through the trellis, with the second
one following immediately behind the first. To advance
from time 7 to time n+1, the decoder first generates and
stores all successors of the C paths in the first wavefront. C
survivors are then extracted from the lists. These paths
constitute the first wavefront at time n+1. Next, the
successors of the C paths in the second wavefront are
appended to the lists and C additional survivors are
extracted to become the second wavefront at time n+1.
Notice that the second wavefront selects its survivors both
from its “own” successors and from those that were left
over by the first wavefront. By introducing additional
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wavefronts in the same fashion, we obtain a decoder
which, in the general case, operates with BC search paths
divided into B wavefronts. We refer to this decoding
principle as Wavefront Decoding (WD). Characteristic of
WD is the fact that a wavefront, having arrived at stage n
in the trellis, may directly select its survivors and then
proceed forward to stage n+1 without waiting for the
arrival of those paths that follow behind. Hence it can be
seen that feedback of metrics and state-information only
appears internal to each wavefront. The processing of the
wavefronts may now be pipelined over several trellis
stages to obtain a linear speedup.

Assuming that the correct path starts out in the first
wavefront, it will eventually, as a result of channel noise,
start to fall back in rank, from the first wavefront to the
second, then to the third and so on, until it reaches the last
wavefront where ultimate rejection awaits. The only way
to escape from a certain loss of the correct path is to
occasionally have the first wavefront stop and wait for the
other wavefronts to arrive. Once the members of all waves
have been accumulated in the C lists, B repeated selections
are made from each list to produce B new wavefronts. The
correct path now gets a chance to recapture its position in
the first wave. Obviously, wavefront accumulation will
reduce throughput, since the pipeline is broken up.
Fortunately, it turns out that the time between accumu-
lations L, can be made fairly large without seriously
degrading error performance. In particular, when data is
encoded in short blocks (< 100 symbols), the accumulation
of wavefronts need only be carried out at the end of the
block. Notice that for the degenerate case L =1, WD
becomes the Generalized Viterbi Algorithm (GVA) [4].

The error performance of WD has been simulated for
rate 2/3 trellis-coded 8PSK on AWGN and Rayleigh
fading channels. In all cases, C=4 and Lp =64 has been
used. In general, it is observed that WD exhibits a certain
performance degradation relative to GVA (with C=4)
and the M-algorithm with the same number of search paths.
This is to be expected, since the selection of survivor
combinations in WD (for Lj>1 and C>1) is more
constrained than in the two other algorithms. However, in
all cases considered here, the degradation is within a
fraction of a dB.!
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Potential-Decoding, Error Correction beyond the Half Minimum Distance for

Linear Block Codes

Robert Lohnert
Daimler-Benz Aerospace, Sensorsysteme, Worthstrafie 85, 89070 Ulm, Germany

Abstract — An error correction procedure for linear
block codes is presented which corrects errors beyond the half
minimum distance. The algorithm is based on minimizing a
real valued function, called potential. Since the potential de-
creases monotonously with decreasing weight of the error vec-
tor, minimization of the potential can be done by local search.

1. INTRODUCTION

Beneath the well known algebraic decoding for linear block codes
there exist several non-algebraic approaches for error correction.
In [1] a maximum-likelihood algorithm for linear block codes was
shown which has exponential complexity. In {2] the minimum
weight words are used as decoding vectors for binary codes.

The succeeding algorithm is applicable for all linear block codes
and uses a statistical decoding approach based on the so called
"potential”.

II. NOTATION

The N-dimensional vector space over the g-element Galois field
GF(q) will be denoted by GF(q)N. For two vectors a2 and b €

GF(q)N the inner product S(a, b) is defined by S(a,b):= ZE a;b;.

The code vectors of the Code C are denoted by ¢, the error vector
by e and the vectors of the dual code C' by ¢'. Using r = ¢ + ¢ with
r,c, e € GF(QN and S(g, ¢) = 0, the ™K - 1 parity-check
equations are defined by A; == S(x, ¢j). Furthermore wi(a) is the
Hamming weight of a € GF(q)N and d_, the minimum distance.

III. POTENTIAL-DECODING

A model is presented which is capable of structuring the Galois
field GF(q)N. In this model a function is defined - called potential
- which can be regarded as a measure for the distance of any vector
to its nearest code vector. Various decoding algorithms can be de-
rived from this model. The potential U(r) of an arbitrary vector r
is defined:

FE
U@ = ol
=1
L stands for an indicator variable for the parity-check equation A..
a. is a weighting factor which depends on the parity-check vector
[ The characteristics of the potential U(r) are:

1, if Aj#0
I;:= (1)

0, if A; =0

U(e)=0 @)
Uxe C)>0 (3
U(r)=U(c+¢)=U(e) @
Ue,) <U(e)), if wi(e,) <wi(e)<d /2, %)

Although eq. (5) bolds only up to d_, /2 it can be shown that
statistically this property is valid up to considerably higher error
numbers. Assuming that o; € R is only dependent on the weight
L =wi(c) of the vector ¢/ gives:

o = oe | wi(¢) =L). (6)

With this assumption U(r) is separable into subpotentials U, (r).
Every subpotential U, (r) consists of the m parity-check vectors of
weight L.

Lw=aY L, UO=2Uo. ™
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It can be shown [3], that the mean value of U] is given by:

- t]
)

=t)=m, —|1-|{1-——— . 8
UL(S‘Wt(S) ) my q [ -1 N J )
For efficient decoding it is not necessary to use all g"¥ - 1 parity-
check equations. Table 1 shows the decoding performance for se-
veral codes using only the two subpotentials U; with the maxi-
mum and minimum weight vectors.

Error (31,11,11) | (63,24,15) | (113,57,15)
Numbert | BCH-code | BCH-code QR-code
<S5 0% 0% 0 %
6 333 % 0% 0%
7 87.3% 0% 0%
8 - 1.5 % 0.06 %
9 - 9.5% 0.6 %
10 - 36.5 % 1.8%
11 - 72.2 % 122 %
12 - 95.0 % 292 %

Table 1: Percentage of decoding errors of weight t.

Figure 1 shows the performance of decoding with the subpotential
Ugg for a (113,57,15) QR-code compared with Bounded Minimum
Distance (BMD) decoding and with a rate 1/2 convolutional code
(K=7) with Viterbi decoding. Potential-decoding is very well
suited to implementations into VLSL To reach the decoding per-
formance of Ugg, only 50 000 gates of an ASIC are necessary, up
to data rates of approximately 10 Mbit/s.

EO E T 3
E Pymi ]

Viterbi, K=7, hard

Ugg. soft

Viterbi, K=7, soft

E-7 F (113,57,15) QR-Code

E-84 2 2 s 8 10 12

Figure 1 Bit error probability of Ugg for the (113,57,15) QR-code
on an AWGN-channel with BPSK-modulation.
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Information Set Decoding Complexity for Linear Codes in Bursty
Channels with Side Information!

Wonjin Sung and John T. Coffey

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI 48109

Abstract — General decoding algorithms for lin-
ear codes that have less complexity than exponen-
tial search have been studied by many researchers
and exact complexities are known for the memoryless
channel [1-4]. Among the various decoding strategies
for linear codes, the information set decoding algo-
rithm has complexity that is significantly lower than
that for most other general algorithms over most code
rates [3,4]. It is the purpose of this paper to derive
the complexity for information set decoding used in
channels where errors may occur in bursts, and to
quantify the gain in complexity over the memoryless
channel case.

I. INTRODUCTION

Errors encountered in many communication channels are
not independent but appear in bursts. One way to effectively
model bursty channels is to assume that the channels have two
states with different probabilities of channel error [5]. The
channels we consider have probability #, to be in the good
state and probability my(= 1 — my) to be in the bad state. The
error probability for the good state is assumed to be r times
the error probability for the bad state, where 0 < r < 1. The
Gilbert-Elliott channels are described by a two-state Markov
chain mode], and state transitions depend on the transition
probabilities. We define the complezity ezponent F(R) of de-
coding algorithms for binary linear codes of rate R as-

F(R) = lim 1 log, M(n, R)
n—oo N
where M (n, R) is the number of computations necessary.

II. INFORMATION SET DECODING ON BURSTY
CHANNELS

For the bursty channel with deterministic state transitions,
the complexity exponent Fp(R) of the information set decod-
ing that gives error probability no greater than twice the error
probability of maximum likelihood decoding is given by

Fp(R)=(1—-R)—-(1-R)H (Bﬁ__”]g?ﬁ)

when R > wy(1 —r), and

TgTpP
Fp(R) = ngH(rp) — (vg — R)H <7r_g~—_R>

otherwise, where H(-) is the binary entropy function and p is
the value satisfying

1—R=mpH(p)+ wgH(rp).

1This work was supported in part by NSF Grant NCR-9115969
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The obtained complexity is shown to be strictly less than the
complexity exponent for the memoryless channel for the en-
tire range of code rates and channel parameters my, 74, and
r. When r = 1, Fp(R) becomes identical to the complexity
exponent for the memoryless channel. The gain in complexity
gets larger as 7 gets closer to 0, i.e., when the channel error
probabilities for two states differ by a larger amount. The
optimal way to select information sets is to choose fnR bad
state symbols and (1 — 8)nR good state symbols, where f is
given by
5o To(R=mp(1 = R)

(7o + 7o) R
when R > mg(1 —r), and # = 0 otherwise. Bounds on the
complexity exponent Fgp(R) for Gilbert-Elliott channels can
be achieved by modifying the result for the channel with de-
terministic state transitions. We obtain

Fp(R) < Fon(R) < Fo(R) + A(b,g)

where b is the transition probability from the good state to the
bad state, g is the transition probability from the bad state to
the good state, and A(b, g) = H(b—z_g—g)+wbgH(g). The bounds
become tight when the channel transitions take place slowly;
we have A(b, g) = 0 for small b and g.

It is possible to improve the bounds for Fgg(R) when side
information such as soft-decision information is available to
the decoder. The extra complexity in the upper bound on
Fge(R), when compared to Fp(R), is due to the state esti-
mation of the received sequences. By using soft-decision infor-
mation, we can effectively estimate which symbols are trans-
mitted through either the good state or the bad state. One
scheme for state sequence estimation is to choose the nry most
reliable symbols out of a given sequence of n symbols, and as-
sume that these are the symbols that have been transmitted
through the good state. For the Gilbert-Elliott channel with
soft-decision information available, we achieve the complexity
exponents very close to Fp(R) even when state transitions
occur frequently.
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When is Hard Decision Decoding Enough?

Peter F. Swaszek

Department of Electrical and Computer Engineering, University of Rhode Island
Kingston, Rhode Island, 02881

Abstract — Many algorithms for soft and near-soft
decision decoding of block codes start by implement-
ing hard decision decoding. In several instances it
has been noted that simple tests of the hard decision
result may allow the algorithm to terminate at this
point. This paper explores this notion in detail.

I. INTRODUCTION
Consider the problem of decoding an (n, k, dmin) binary block
code with codewords c;. Assume that antipodal signaling,
s; = VE(2c; — 1), and additive Gaussian noise (zero mean,
variance %) produce the channel observation

X =s; +n.

To minimize the probability of error the two standard de-
coding techniques are soft decision and hard decision decod-
ing (with resulting codewords ¢, and c, and performances
P.(soft) and P.(hard), respectively). Soft decision decod-
ing, while providing optimum performance, is computation-
ally burdensome. Hard decision decoding has a significantly
reduced implementation complexity at reduced performance.
During the last 30 years many authors have searched the mid-
dle ground for high performance, low complexity approaches.

Many of these approaches start with hard decision decod-
ing, searching the nearby codespace for a best choice of code-
word. It has been noted that such algorithms can terminate
early if the data x and the hard-decision result ci together
satisfy certain conditions. We envision, then, a decoder with
operation:

1. Hard-decision decoding is implemented yielding ¢x.

2. A test is performed to see ¢, matches ¢, (without, of
course, directly finding ¢;). If the answer is yes, the
decoding algorithm terminates at this point.

3. If the test of step 2 fails, full soft decision decoding or
some other strategy is implemented.

Without actually implementing soft decision decoding, the
test in step 2 has three possible answers: yes, no, and the
data is inconclusive. A “yes” response is called a success for
the test; conversely, a “no” or “data inconclusive” response
is a failure in that additional processing would be required
before decoding is complete.

The motivation for such tests is that since hard decision
decoding is correct a relatively high percentage of the time, it
often matches the soft decision decoding result exactly. This
idea can be made more mathematically formal. Specifically,
it can be shown that

P.(hard) — Pe(soft) < Pr (ci # cs) < Pe(hard) + 2P (soft)

Since P.(soft) is typically much smaller than P.(hard), then
Pr (ci # cs) = P.(hard). Thus, the failure probability for any
test for step 2 is approximately lower bounded by P.(hard).
An efficient test should fail only about as frequently as hard
decision decoding makes an error.

As an example of a test of ¢, = ¢, consider the following
well known condition:

The Codeword Test — If the hard decision decoder’s input
is already a codeword, then cp = c;.

Unfortunately, this result is far from the lower bound on the
failure probability. Several tests for step 2 are described be-
low with emphasis on the coherent Gaussian channel. Ad-
ditional details, including tight upper and lower bounds to
performance for these tests, are presented in [3].

II. Tests FOR THE AWGN CHANNEL
The first test has been mentioned previously [2]:

The Hypersphere Test — If x is within /dminE units (in
Euclidean distance) of the hard decision decoded signal then
Ch = Cs.

Realizing that the actual soft decision decoding region is a
convex cone, the test region can be expanded from a hyper-
sphere to the circumscribing right circular cone:

The Circular Cone Test — If x satisfies

X(2Ch - 1)T > n — dmin (1)
VnxxT n
then x falls within the aforementioned cone and cp = C,.
While the cone test completely encloses the hypersphere test,

the cone and codeword tests do have different support; hence,
it seems reasonable to combine them:

The Combined Test — If the hard decision decoder’s input
is already a codeword or if the received vector x satisfies the
cone inequality in (1) then cr = cs.

Algebraic analysis of the soft decision decoding operation [1]
yields a further test:

The Polygonal Cone Test — Define z;, i =1,2,...n, by

-

If the sum of the dmin largest z; does not exceed zero then
Chp = C;.

+z; if chi=0
—z; if cpi=1

This set subsumes all of the above tests with some increase in
complexity. The resulting performance can be quite good.
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First Order Approximation of the Ordered Binary Symmetric
Channel

Marc P.C. Fossorier and Shu Lin!
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Abstract — In this paper, different results related to
the ordering of a sequence of N received symbols with
respect to their reliability measure are presented for
BPSK transmission over the AWGN channel.

I. APPROXIMATION OF PE(nq,---,nj;N)

For BPSK transmission over the AWGN channel, many max-
imum likelihood decoding (MLD) algorithms of binary lin-
ear block codes first reoder the received symbols within each
block with respect to their reliability. In [1], the statistics of
the noise after ordering are derived. These statistics allow to
tightly bound the error performance of any suboptimum algo-
rithm based on reordering.

After ordering a sequence of N symbols, the probability
Pe(n1,--+,n;; N) that an error occurs at positions ny,-- -, n;
can be computed exactly. However, no close form solution
has been found for N > 3. This is mostly due to the fact the
the noise for which the statistics are derived is not the ordered
random variable. Based on the central limit theorem, we show
in this paper that for N large enough, the distribution of Wi,
the restriction of the i*" ordered noise value to the interval
[1,00), is well approximated by the distribution of a normal
random variable that we specify. This approximation leads to

4(1—m;)

Pe(i; N)=e Mo , (1

~—

where m; = o~'(1—1i/N), after defining, for n > 1,
a(n) = Q(2 — n) — Q(n), with the normalization Q(z) =
(mNo)~1/? f:o e~ /Nodn. When N is large enough, Equa-
tion 1 provides a tight bound.

If W; and W, represent the i** and j'* ordered noise val-
ues, it is possible to show that W;|W; has the density func-
tion of the (j — ¢)*® noise value after ordering a sample of
size N — ¢ from a population with distribution truncated to
the interval [m(w;:), M(w;)], where m(w;) = min(2 — w;, w;)
and M(w;) = max(2 — wi, w;). Combining this result with
Equation 1, we show that, fori < N,

Pe(i, j; N) (%) Pe(i; N) Pe(j; N). @)

Generalizing Equation 2 to any ordered set of indices I; =
{n1,---,n;} corresponding to positions in error after ordering,
we compute, based on a chain argument,

-1

N
Pe(nl,---,nj;N)%’H (N-—

=1

) Pe(ni; N)-Pe(nj; N). (3)
"

Therefore, despite the fact that the random variables repre-
senting the noise after ordering are dependent, their associated
error probabilities tends to behave as if they were independent,
for N >> n;_1 and large enough.

1This work was supported by NSF Grant NCR-91-15400
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II. FIRST ORDER APPROXIMATION OF THE ORDERED
BINARY SYMMETRIC CHANNEL
The value Pe(ny,---,n;; N) represents the probability that at
least the bits in position ni,---, n; are in error after ordering
a sequence of length N. We now also define Pen(n1,---,ny)
as the probability that only the bits at position ni,---,n;
are in error after ordering a sequence of length N. While
Pe(ni,-++,n;; N) is computed by integrating the joint dis-
tribution of the n; ordered random variables Wy, ,---, Wy,
the computation of Pen(ni,---,n;) requires to integrate
the joint distribution of the N ordered random variables
Wi,-+-,Wn. It follows that the discrete time channel model
after ordering is a 2”-state BSC with transition probabilities
Pen(ny,-,n;)’s. We refer this channel as the Ordered BSC
(OBSC). Based on Equation 3, we approximate

J
Pe(nl,---,nJ;N)EHPe(m;N), (4)

=1

which expresses that after ordering, the events of having er-
rors at positions ni,---,n; remain independent. Therefore,
the 2% -state fully connected OBSC is equivalent to N time-
shared BSC’s corresponding to each ordered position. We
name this approximation the first order approximation
of the OBSC.

The capacity of the OBSC Cp ave requires the computation
of 2% N-order integrals and rapidly becomes too complex to
evaluate as N increases. In contrast, the capacity of the first
order approximation of the OBSC

1 N
Crave =1~ % > h(Pe(i; N)) bit (5)

i=1

is easily derived. For N = 1, é’l,aye is simply the ca-
pacity of the BSC with crossover probability Q(l), while
Imy—oo C’N,m,e should provide the capacity Chppsk of the con-
tinuous Gaussian channel for BPSK transmission. We observe
that Cnave = C'N,a.,e and that the convergence to this limit
is very fast as N increases, so that

CN,a.ve ~ CN,aue ~ C‘bpska (6)

for N large enough. Equation 6 indicates that when con-
sidering an ordered sequence of sufficiently long N, the first
order approximation of the OBSC should provide a good ap-
proximation of the continuous Gaussian channel, for BPSK
transmission. Therefore, for a given SNR, knowing the posi-
tion in the ordering instead of the exact received value should
be sufficient from a performance point of view.
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An Asymptotic Evaluation on the Number of Computation Steps
Required for the Nearest Point Search Over a Binary Tree
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Abstract — This paper analyzes the number of
computation steps on a binary tree searching fast
for one in some beforehand-given points that is
the nearest to a query point in a Hamming space.

I. INTRODUCTION

{0,1}' denotes the whole set of binary sequences (called
points) of a length I > 2. We measure the distance be-
tween points by the Hamming distance normalized by I.

Suppose that n > 2 arbitrary points 2y, -+, z, (called
samples) in {0,1}' are given, where duplications are al-
lowed. We consider arranging the samples into a binary
tree and, over it, searching fast for some # € {zy, -+, %, }
that is the nearest to any querried point z € {0, 1}'.

The authors’ last paper [2] mentioned a KM tree [1]
that could search for the nearest point fast but the search
time was neither clear in theoretical nor in experimental.
The present paper evaluates theoretically the number of
computation steps required for the nearest point search
over an alternative tree.

JI. TREE CONSTRUCTION

Fix a real constant v > 0 called a stopping threshold.
Given an arbitrary sequence X = z;---z, of n samples,
the following procedure constructs a binary tree T, (x)
each leaf of which stores at most yn samples.

Procedure 1 (tree construction procedure):
Step 1: Construct a tree comprising only a root that stores
x. (Regard this root also as a leaf to start (a)-(b).)
Step 2: While the present tree has at least one leaf N
storing a sequence z = z- - -z|z| of points such that |z| >
gn and all of zy,--, 23z are not the same, do (a)-(b).
Otherwise, answer the present tree.
(a) Let ¢ = z,. Discover one of r-values that make |z
and |zg| as equal as possible, where 2z, and zr denote the
sequences composed of ¢;s respectively for which d(c, &) <
rand d(c, &) > 7.
(b) Store (c,r) on N. Store z1, and zg respectively on the
left and right child nodes of N. Next, remove z from N. O

III. THE NEAREST POINT SEARCH
Let an arbitrary subtree T of T, (x) whose vertex is a
nonleaf or leaf node of T,,(x) be given with a supposmon
that the total length of zs stored on all leaves of T',(x) is
< 1/v. Let S denote the set of all points stored on lea,ves
of T*. Fixed a real constant A > 0 called pre- boundmg
parameter, the following recursive procedure a(T*, ) for
an arbltrary query point z € {0, 1} tries to answer one of
points §s in S that achieve d(z,§) = mmyes d(z,y) < A.
Procedure 2 (search procedure fa(T", z)):
Step 1: If T" is a minimal tree; then do Step 3, else do 2.
Step 2: For the pair (¢,7) of point and nonnegative real
stored on the root N of T™, execute one of (a)-(c).

Suguru Arimoto

Dept. Math. Eng. & Info. Physics, University of Tokyo

7-3-1 Hongo, Tokyo 113, Japan

(a) In case of d(c,z) < 7—A, compute g, = fa(T}, z) and
answer 9, as the output of fA(T" z), where T denotes
the subtree of T™ whose vertex is the left child node of N.
(b) In case of d(c,z) > r+A, compute jr = fa(Tk,x)
and answer yg.
(c) Otherwise, compute both of g, and gr. If d(z,91) <
d(z,9r), then answer J,, else answer Jg.
Step 8: Now T™ coincides with a leaf of T, (x) that stores
a finite sequence z = 23---2|z| of points (Note that z; =
- = z|z) provided that v < 1/n). Answer 2. O
The branching into (a)-(c) based on the triangle in-
equality cuts off wasteful traversal over T, (x) efficiently.
The nearest point is searchable by initializing T as T,,(x)
provided that v < 1/n.

IV. COMPUTATION STEPS FOR A POINT SEARCH

Lemma 1: Selected n i.i.d.samples zy,-+-,z, in {0, 1}{
the depth of T, (x) is almost surely < logy(1/y) if and
n are sufﬁc1ently large.

For each nonleaf node N of T,(x), let On (ca.lled a
gray zone) denote the set of all query points that activate
Step 2(c) in Proc.2, ie., On = {z| = € {0,1}}, 7—A <
d(c,z) < r+A}, where (c,r) is one stored on N.

Lemma 2: Fix an arbitrary real constant #>0. Se-
lected a query point @ uniformly in {0,1}!, the probability
that & may belong to Gn on condition that a node pointer
latches a nonleaf node N of T, (x) at Step 2 in Proc. 2 is
< p if | is sufficiently large. O

In applying Proc.2 on T,(x), let p,(x) denote

Z ( the number of the latched nodes ) - P(z), (1)

con! for a query point z
z i

where P(z) = 1/|{0,1}| = 27" Vz € {0,1}\. We can
regard this s, (x) as the mean number of the latched nodes
in once application of Proc. 2.

Lemma 3: Selected n i.i.d. samples zp,-++,2z, In
{0, 1}, py(x) is almost surely < logy(1/7) + 2 + 1/n 1f
[ is sufficiently large.

Corollary 3: p,(x) with v < 1/7n is almost surely of
O(logn) i I is sufficiently large. |
Thus, the mean number of computation steps of Proc. 2
is almost surely of O(logn) if I is sufficiently large.
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New estimation of the probability of undetected error

Volodia Blinovsky*
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Abstraei— We obtain the upper bound on the
probability of undetected error which is valid
uniformly on choosing the probability of the
symbol invertion. This bound is better than
previous known bounds
Let F} — Hamming space of binary sequences of length n
with metric d(z,y) = L0 | @i — % l;z,y € F}. Let
Cu(yy 1) 4 zser,.’d(,’v)m z— sphere of radius » with
center in y € F}. For arbitrary linear code A, C FJ
of dimension k(| Ant |= 2*) define the set A, = {AL;r =
0,1,...n},z € Agg where A} = AnkNCu(zyr) | -
numder of vectors from A,; which distance from z € Aq;
is equel to . It is easy to see that A, A} does not depends
on £ € Anp 80 we ommit the index z in the notations
A, A}, The set A is called the spectrum of the code Apt.
For arbitrary p € [0, 1] the probability of undetected error
P.c(p, Ant) is defined by the equality

n

Pe(p, Aut) = 3 AP (1),

r=1

We are interesting in the value

A .,
P(n,k) = min max
A CED pef0,1]

It is easy to show that
1
P.. (‘2‘, Auh) =

P(n,k) > k" 27",
The best known upper bound on P(n, k) which is valid
for all n, k was obtained in [1] and is the follows

P(n,k) < C1/n2*—"

where C; is constant (Cy; < /7/2(1 + o(1)),n — o0).
This bound was obtained by the estimation of the RHS
of the following inequality offered earlier in [2]

P(n, k) < 2t~ i c (-::) (1~ %)"" .
ro=1

Here we present the result which is the statement of the
following theorem.

Theorem 1 For some constant Cy and for all n, k the
Jollowing estimation is valid

P(n,k) < (CaVinn +1)2k=,

*Supported by Russian Foundation of Fundamental Research
Under Grant 93.012-458

P"(P’ Auk)'

2 —1
2n

80

During the proof of this theorem we show that at least
for sufficiently large n the estimation C3 < 2//x is valid,
but it can be improved by the more precise calculations.

To prove this theorem we divide the spectrum A into
six parts and prove the existence of the code A, which
spectrum satisfying the following relations

21—-1
Z ATy’ (1 - p)u-—r = 0;
r=1
g2—1

Z A’p'(l __p)n.-r < /l_fa_.rﬁzk—s;

r=n

n-—g3 1
Z Arpr(l __p)n.—r S (1 + ___) 25—5’

Inn
r=s;

~ /ln n
z A'p'(l -p)" < Tzk—u;
r=fe-go-pl

Y Ar-p =0

re=n—g41

for some 1 < 8; < 83 < n/2. Note that if k > C31n?n for
gome constant C4 > 0 then using the same arguments as
in the proof of the theorem it is easy to prove the more
strong upper bound for P(n, k):

P(n, k) < Cq2b—"

where C > 0 come constant. We conjecture that in
order to prove the last estimation for all values of k& and
n it is necessary to use some additional nonprobabilistic
arguments.
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Some Remarks on Efficient Inversion in Finite Fields

Christof Paar?
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Abstract — This contribution is concerned with bit
parallel inverters over finite fields. Two alternative
approaches for inversion with low complexity will be
reviewed. Both methods are based on multiple field
extension of GF(2). It will be shown that one architec-
ture is a generalization of the other’s architecture core
algorithm. As an impressive example, the complexity
of an inverter in the field GF(2%) will be computed.

I. INVERSION IN EXTENSION FIELDS OF DEGREE Two
The first architecture was proposed in [2] in 1989 and rein-
troduced in [3] in 1991. The core part of the architecture is
the following. Let us consider an element A = ao + a1z from
GF((2/?)?), where ag,a1 € GF(2"/%). There exists always a
field polynomial of the form P(z) = z? + & + po, where po €
GF(2%/?). If the inverse is denoted as B = A™' = bo+b1 z, the
equation A-B= [aobo +poa1b1] -+ [aob1 + aibe + (11b1]:1,‘ =1
must be satisfied, which is equivalent to a set of two linear
equations in bo, b; over GF(2F/%) whose solution is:

b = tu 2
by = o , where A = ao(ao + a1) ¥ poa. (1)
= A

The advantage of this algorithm is that all operations are per-
formed in GF(2/?). The algorithm can be applied recursively.

II. INVERSION IN COMPOSITE FIELDS

The second architecture was proposed in the last section of
Itoh-Tsujii’s paper from 1988 [1, Section 6]. It is based
on so-called composite fields which are finite fields with two
extensions GF((2")™). We start with the trivial notation
A7l = (A")"' AL If the auxiliary parameter 7 is defined as
ro=2r T =142"4 -+ 2(m=1)" "we obtain the important
property: A” € GF(2"), VA € GF((2")™). We are now able
to state a four step algorithm for computing the inverse of A:
Step 1 Compute A™"!

Step 2 Compute A" 'A = A"
Step 3 Compute (A")™! = A™" (Inversion in GF(2"))
Step 4 Compute ATAT =471

ITI. A RELATION BETWEEN THE ARCHITECTURES
For the development of a relation between the two architec-
tures, we consider [1] with composite fields GF((2")?) and
P(z) = 2% + x + po. An arbitrary field element is represented
by A(z) = a1z + ao, its inverse by B := A~ =biz +bo. The
parameter 7 is now r = 2" + 1. By denoting 2"t = 512 + s0,
Step 1 of the algorithm is: A™"! = [a181]x + [a150 + ao). The
computation in Step 2 is: A” = [aos1 +a150 +ao+ais1]ar1z+
[a0a1s0 + ad + a2s1po). Since A” is an element of the subfield
its coefficient at z is zero, and thus a1s0+ao = (ao+a1)s1. In-
serting this relation in the expressions for A™"! and A" yields:

2

Blz) = A™ (AT = a1z + (a1 + ao) .
() = A77(AT) ~ag(a1 + ao) + a?po

1The research was done while the author was with the Institute
for Experimental Mathematics, University of Essen, Germany.

Equation (2) is the same as the Equations (1). [1] can thus be
viewed as a generalization of the core algorithm of [2]. [1] is,
however, not a generalization of the architecture of {2}, since
the latter allows multiple field extensions of degree two.

1V. EFFICIENT BIT PARALLEL INVERSION IN GF(28)
For the application of the architecture [2] the decomposition

of GF(2®) into GF((2%)?) is considered. Let Q(y) = y*+y+1
be the primitive polynomial generating GF(2*) with Q(w) = 0
and P(z) = z% +z +w™* the primitive polynomial generating
the composite field. For computing Equations (1) in hardware,
the following GF(2*) arithmetic modules must be provided:
e A direct approach allows inversion with not more than
15 XOR/10 AND gates [4, Appendix A].

o Three multiplications require 45 XOR/48 AND [5].

e The two additions require 2 - 4 = 8 XOR gates.

o Constant multiplication with w'? requires 1 XOR gate.
e Squaring of an element requires 2 XOR gates.

The resulting over-all gate count of 71 XOR/58 AND is re-
markably low. It is interesting to compare this complexity
with bit parallel multiplication. For instance, the multiplier
[5] has a gate count of 84 XOR/64 AND.

V. CONCLUSIONS AND FURTHER RESEARCH
Decomposition of Galois fields GF(2%) can lead to area-

efficient inverters. In general, this approach seems promising
since multipliers over composite fields can also be realized ef-
ficiently [3] [6]. For certain fields, in particular for GF (2%,
and inverter can be realized with a gate count smaller than
that of a multiplier. This result is contrary to common belief.

For technical applications it will be helpful to provide gen-
erators &’ +x+po for tower fields with multiple field extensions
of degree two. Lists with irreducible polynomials over non-
prime fields are very rare in literature. The zero coefficients
po of these polynomials should be optimized.
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Abstract - Simulation results for concatenated outer Reed-
Solomon and inner convolutional codes used in multilevel
schemes are presented. Different high-rate inner convolutional
codes are considered, viz., punctured codes and partial unit
memory (PUM) codes. Best results are obtained for PUM codes,
since they have a better extended row distance profile. The effect
of channel and block interleaving at the different levels is also
studied, and iterative decoding is tried!.

1. INTRODUCTION

A multilevel code uses some signal set S, which is a finite subset
of a lattice or a set of points with some group structure. This set is
partitioned into a k-level partitioning chain, S,/S,/.../S » Which
can be described as a rooted tree with k + 1 levels (the root is level
zero). Every node at level i is partitioned into disjoint subsets which
are cosets. Each partition at level i, §;_,/S;, is determined by a
component code C;. In general these component codes may be of
any type, but for this work we have only considered convolutional
component codes and concatenated component codes with inner
convolutional and outer Reed-Solomon codes. Using multilevel
codes one can achieve arbitrarily large squared Euclidean free dis-
tance.

The structural properties of multilevel codes make them attrac-
tive for code constructions. Unfortunately, the decoding will be car-
ried out in a way which is not maximum likelihood, otherwise the
computational efforts become far too large even for small systems
(i.e., systems with not very complex component codes). The compu-
tational complexity of the preferred multistaged decoding procedure
from [1] is proportional to the sum of the complexities of each com-
ponent code, but it suffers from error propagation. In order to mini-
mize the errors at each level, a concatenated scheme with outer
Reed-Solomon and inner convolutional codes was considered. The
errors of the inner convolutional decoders occur in bursts, and the
idea is that the inherent burst error correcting capability of the outer
RS code will correct these errors.

Our system transmits signals over the AWGN channel. The used
signal constellation is 8-PSK. This implies three levels in the sys-
tem. Since the partition chain is 8-PSK/4-PSK/2-PSK/1-PSK, the
minimum squared Euclidean distance among the signal points in the
subsets at the different levels increases for each partition. Therefore
the encoder of level 1 must be protected by a more powerful code
than that of level 2, et cetera.

II. SIMULATION RESULTS

The simulations show that there is no need for a concatenated
code at level 3. In order to retain as high overall rate as possible, the
rate of the inner code at level 2 must be quite large. Due to its simple
decoder implementation, a punctured convolutional (PC) code was
tested. Simulations then show that the bit error rate (BER) perfor-
mance of level 2 bounds the overall code BER. This is caused by the

1. This work was supported in part by the Swedish Research Council for
Engineering Sciences under Grants 92-661 and 94-83.
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bad extended row distance profile of punctured codes, i.e., error vec-
tors e of small weight are enough to result in quite long bursts. As an
alternative, a PUM code was tested. There exist decoding proce-
dures for these codes [3] that are not more complex than decoding
of PC codes. The simulations show that a PUM code with overall
constraint length one less than the previously used PC code, per-
formed only negligible worse (< 0.05 dB). From a practical point of
view the reduced decoding complexity is far more important.

We need to minimize error propagation at each level (between
the inner and outer code) as well as the error propagation between
levels. The first is accomplished by reducing the length of error
events from the inner decoder by applying block interleaving. The
simulations confirmed a theoretical result from [2] on how many
rows the interleaver matrix need in order to maximize the free dis-
tance of the concatenated system. One idea how to decrease the
error propagation between levels is to interleave the coset labels of
different levels in time (channel interleaving). However, this seems
to be of little help. Comparing simulations of our system without
channel interleaving with simulations of a theoretical system with-
out any error propagation at all (a genie between every level), shows
a difference of less than 0.05 dB already at a BER of 10-4.

Finally we studied iterative decoding and its influence at the dif-
ferent levels. There is no immediate way of extracting the error
probability of individual decoded bits because of the hard decoding
of the RS codes. It turns out that only the first level benefits from
‘hard’ iterative decoding. The improvement on the whole system is
only marginal (the asymptotic error performance follows level 2
instead of level 1). The total BER is not changed more than a few
tenths of a dB.

Bit error probabilities

1 iteration, /=10,
C codex only, R=1.996
~—- - Uncoded 4-PSK

3.0 4.0 8.0 9.0

5.0 6.0 7.0
E/N,(dB)
Fig. 1. Simulation results for the concatenated system vs. uncoded 4-PSK.
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Soft-Decision Decoding for Trellis Coding and Phase-Difference Modulation
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Abstract -A simple method is presented for performing soft-de-
cision demodulation and decoding of trellis-coded phase-dif-
ference modulations. Results are given for trellis-coded M-ary
differential phase-shift keying and M-ary double-differential
phase-shift keying, each with soft-decision demodulation and
decoding. The performances of these combinations of coding,
modulation, demodulation, and decoding are presented for
channels which may introduce a phase ramp in the modulated
signal.

SUMMARY

Phase-difference modulation, such as M-ary differential phase-
shift keying (M-DPSK) and M-ary double-differential phase-shift
keying (M-D2PSK) [1], is desirable for some mobile radio systems
and channels in which it is difficult to obtain an accurate phase
reference. Either M-DPSK or M-D2PSK may be coupled with a
trellis code to decrease the probability of bit error for a given sig-
nal-to noise ratio (SNR). As the rate of the code is decreased, the
number M of points in the M-ary PSK (M-PSK) signal constella-
tion must be increased in order to transmit the same rate of infor-
mation in the same bandwidth. As M is increased, the probability
of symbol error increases, even for a channel with perfect phase
stability. However, even greater degradation results if there is Dop-
pler shift in the channel or phase drift in the system’s oscillators. It
is therefore of interest to investigate modulation and coding sys-
tems that can tolerate such a phase variation in the carrier signal.
To avoid trivialities, it is assumed in all that follows that M>4.

Trellis coding provides coding gain to offset the increase in
symbol error probability that results from increasing M. Optimal
trellis demodulation and decoding may be too complex to imple-
ment in a mobile radio system. An alternative method which per-
forms nearly as well and is much less complex is to perform the
demodulation and decoding separately. For example, it has been
suggested that the pragmatic trellis code be demodulated in this
way, with hard or soft bit decisions at the output of the demodula-
tor being input to a convolutional decoder modified to correct par-
allel branch errors [2].

The decision regions for standard hard-decision demodula-
tion of M-PSK signals correspond to equal-length intervals for the
phase of the received signal. As a consequence, standard hard-
decision demodulation is easy to implement, but it does not pro-
vide information on the relative reliabilities of the bit decisions
that result from a symbol decision. Because some bit decisions are
more reliable than others, soft-decision demodulation and decod-
ing should be employed.

The natural generalization of the standard method for soft-
decision demodulation and decoding of binary signals (e.g., binary
PSK) is not effective in M-PSK demodulation, in part because the
reliabilities of the bit decisions do not depend only on the received
signal strength. The optimum method for soft-decision decoding
for a channel with perfect phase stability is too complex for most
applications; in particular, it requires an accurate measurement of
the SNR in the front end of the receiver. In addition, this method

This research was funded in part by the Army Research Office under grants
DAAH04-93-G-0253 and DAAH04-94-G-0154 and in part by a grant from
ITT Aerospace and Communications Division. John M. Shea is the recipi-
ent of a National Science Foundation Graduate Research Fellowship.

may perform very poorly if there is any phase drift in the carrier.

We propose a suboptimal method to generate quantized soft
information for each bit associated with an M-PSK symbol. This
method exploits the way bits are assigned to symbols in the
M-PSK constellation, and it is simple to implement in the last stage
of the demodulator. Simulation results show that the proposed
method provides a significant performance improvement over hard-
decision demodulation and decoding. The method is based on
dividing each hard-decision phase interval into subintervals, using
phase as the only criterion. The weights for the individual bits are
constant throughout each subinterval, but they vary among the sub-
intervals, even within the same hard-decision interval. The length
of the subintervals can be adjusted to optimize performance.

A simulation was employed to obtain numerical values for
the additional coding gain for soft-decision decoding over hard-
decision decoding. The bit error probability is shown in Figure 1
as a function of Ep/Np, the energy per information bit divided by
the one-sided spectral density of the white Gaussian noise. The
dashed curves illustrate that the simple two-bit quantized soft-de-
cision decoding scheme for 8-DPSK with the rate 2/3 pragmatic
trellis code provides up to 1.5 dB additional coding gain over the
hard-decision system on the additive white Gaussian noise channel
with a stable phase. The solid curves show that the simple two-bit
quantized soft-decision decoding scheme with 8-DPSK performs
up to 3.5 dB better than the hard-decision system for a system with
a 10 degree phase rotation. The phase rotation is defined as the
phase change over the duration of one M-ary symbol due to a lin-
ear phase drift in the carrier. The two-bit soft-decision decoding
scheme used with M-D2PSK provides up to 2.2 dB coding gain
over hard-decision decoding for channels with stable phase and
channels with phase ramps.

REFERENCES
[13 M. K. Simon and D. Divsalar, “On the implementation and performance
of single and double differential detection techniques,” IEEE Trans.
Commun., vol. 40, no. 2, pp. 279-291, February 1992.
[2] Viterbi, Wolf, Zehavi, and Padovani, “A pragmatic approach to trellis-
coded modulation”, IEEE Commun. Mag., pp. 11-19, July 1989.

10° —
O Hard-decision decoding;
O Two-bit soft-decision decoding
¢ g |
.g 10 -\0\ “é 5
p ° W
o Vo
v Ir]
B 102 Boindy
> )
2 voR
E=) & v
£ .-
& 5 | Stable i\
10" [ Phase i ‘9 \
)
N
o R IR N AW
6 8 10 12 14 16 18 20

Bit Energy to Noise Density Ratio, E; /N 0 (dB)

Figure 1. Comparison of hard- and soft-decision decoding
for two channels

60




Coding and Decoding of Punctured QAM Trellis Codes

Frangois Chan and David Haccoun
Department of Electrical and Computer Engineering
Ecole Polytechnique de Montreal
P.O. Box 6079, station "Centre-Ville", Montreal, Canada, H3C 3A7

Abstract — Punctured convolutional codes allow an
easy implementation of variable-rate encoders/decoders. In
this paper, the puncturing technique is used to generate new
QAM trellis codes from a rate-1/2 code. These codes are true
high-rate codes, without parallel branches in the trellis. A
simplified decoding technique is also presented. It is shown
that the advantages the puncturing technique provides with
binary convolutional codes are essentially maintained with
Trellis-Coded Modulation.

Summary

Trellis-Coded Modulation (TCM) can yield significant
coding gains of 3 to 6 dB over uncoded modulation without
bandwidth expansion [1]. Unfortunately with Ungerboeck’s
usual TCM, each signal constellation requires a different
code. For example, a code for 8-PSK is different from a
16-PSK code. As a consequence, implementing a system
with various spectral efficiencies (e.g., 2, 3 and 4 bits/s/Hz)
would necessitate several distinct encoders/decoders. In
addition, since there are 2™ branches converging onto each
trellis state for a rate R=m/(m+1) TCM code, decoding
such a code with the Viterbi algorithm requires (2™-1)
binary comparisons per state. Hence, Viterbi decoding
in the usual manner becomes quickly impractical as the
number of states and the coding rate increase. A pragmatic
approach to this problem has been proposed by using a rate-
1/2, 64-state convolutional code and adding (m-1) uncoded
bits to the output to produce a rate R=m/(m+1) code [2,
3]. The disadvantage of this approach is that the trellis
exhibits parallel branches. For some codes, limiting the free
distance to the distance between parallel branches leads to
suboptimality.

It has been shown that the puncturing technique can
be applied to TCM [4]. Using extensive computer searches,
8-PSK and 16-PSK punctured codes have been found with
free squared Euclidean distances that are either equal to or
almost as large as the distances of the best known codes
discovered by Ungerboeck. The puncturing technique can
also provide codes with uncoded input bits and parallel
branches in the trellis. Furthermore, variable-rate punctured
TCM codes have also been found using computer search.
Families of QPSK, 8-PSK and 16-PSK codes, which are
quite good in the sense of Euclidean distance as compared to
the best known codes, have been obtained from a single rate-
1/2 convolutional code and a varying puncturing pattern [5].
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The advantage of using a single rate-1/2 code is that variable
bandwidth efficiencies and hence, variable throughputs can
be achieved with a single encoder/decoder.

The puncturing technique presented here is quite flex-
ible, allowing either a true high-rate code or a code with
parallel branches. In this paper, new 8-QAM, 16-QAM and
32-QAM punctured trellis codes are presented. These codes
are true high-rate codes without parallel branches. The free
Euclidean distance is not limited by the distance between
parallel branches and hence, when the number of states is
large, these codes can provide a larger free distance than
codes with parallel branches. Furthermore, over Rayleigh
fading channels, the absence of parallel branches in the
trellis is beneficial since codes without parallel branches

yield a better error performance than codes having parallel
branches.

By using the fact that these QAM codes are generated
from a rate-1/2 code, decoding can be performed on the
low-rate trellis. Hence, the reduction in the number of
binary comparisons the puncturing technique provides with
convolutional codes is essentially maintained with TCM at
the cost of a slight degradation in the error performance.
These decoding techniques and simulations results will be
presented.
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Abstract — New design rules for multilevel codes
with finite codeword length are derived from infor-
mation theory leading to digital transmission schemes
with high power and bandwidth efficiency.

I. INTRODUCTION

Multilevel coding (MLC) is a well known approach to cre-
ate power and bandwidth efficient communication schemes.
Usually, the component codes are designed for balanced Eu-
clidean distance for all levels, see e.g. [2]. But this rule does
not take into account the tremendously increasing number of
nearest neighbour error events for low levels due to the mul-
tiple representation of code symbols by signal points, cf. [3].
Thus, in multistage decoding a predomination of errors in low
levels can be observed which leads to a serious degradation in
power efficiency. Therefore, we propose to design the compo-
nent codes using parameters from information theory of the
equivalent channels at the individual levels.

II. MULTILEVEL CODING
MLC for a M = 2%-ary digital modulation scheme is based

on a binary set partitioning of the signal constellation A =
{am|m € {0,1,...,M — 1}} defining a mapping m « ¢ of
binary labels ¢ = (co,cl,...,cl_l) to the signal points am.
The subsets of signal points at level 1 are denoted by the path
to the subsets in the set partitioning tree, i.e.

Ao i ={am|m (co,...,ci, zi+1,...,xl_1),zj € {0,1}}.

At each level i equivalent channels can be considered for
the transmission of binary symbols ¢*. The sum of capacities
C' of these equivalent channels yields the capacity C of the
communication scheme {[4], [3]). Consequently, we proposed
to choose the rates R’ of long codes at levels ¢ equal to the
capacities C* [3].

III. RATE DESIGN FOR FINITE BLOCKLENGTH
The blocklength of MLC schemes is limited due to restric-

tions like delay or decoder complexity. Therefore, a design
rule for MLC with finite and uniform length n of the compo-
nent codes at each level is presented in this paper.
The tool to consider codes with finite length n is the random
coding bound

Pe < 2—n‘ET(R)v 1)
where p. denotes the probability of block errors and E,(R)
the random coding exponent.

For transmission of a symbol ¢’ at level 4 in a MLC scheme a
point of the subset A o i is selected equiprobably. Thus, the
probability density function (pdf) of the continuous channel
output y for given ¢’ reads

i 1
Kl = X

c ..‘c'l
ameAcD..

fy(ylan), (2)

.ct
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where the conditional pdf’s fy(y|am) characterize the discrete
memoryless channel. From this equation, the random coding
exponents Ei(Ri) for the equivalent channels at levels 7 of a
MLC scheme can be calculated in a straightforward way.

A suitable representation of the random coding bound for
the rate design are isoquants

Ei(Ri) = —195;& = const. V o7, (3)

where ¢? denotes the noise variance per dimension. We pro-
pose the design rule:

For a maximum tolerable block error rate p. and given
codeword length n at all levels, choose the rates R
of a MLC scheme from the corresponding isoquants of
the random coding exponents Ei(Ri) for given noise
variance o? or given total rate R =7 . R,

IV. SiMULATION RESULTS

Simulation results for digital PAM transmission with MLC
over the AWGN channel are presented. Turbo codes [1] with
rates designed from random coding bound are employed as
component codes. For 16QAM with total rate 2 = 3 and
blocklength » = 2000 a bit error rate (BER) < 107° is
achieved only 1.4 dB above capacity limit. For » = 20000,
BER < 107° only 0.8 dB above capacity has been observed.
For 8PSK with total rate R = 2, simulation results are simi-
lar. The results for 16QAM can be extended to M > 16-ary
QAM schemes by imposing further uncoded levels. Further-
more, these uncoded levels can be employed to achieve an
additional shaping gain.

V. CONCLUSION

The benefits of powerful binary codes can be transferred
to any digital transmission scheme via the multilevel coding
approach, if the individual rates are well chosen, e.g. accor-
ding to the random coding bound criterion for the individual
levels. Application of Turbo codes to MLC schemes offers di-
gital communication close to capacity limit for a wide range
of trading power for bandwidth efficiency.

REFERENCES

[1] C. Berrou, A. Glavieux, P. Thitimajshima. Near Shannon Limit
Error-Correcting Coding and Decoding: Turbo-Codes (1). In
Proc. of the Int. Conf. on Comm. (ICC’93), pp. 1064-1070,
Geneva, May 1993.

[2] E. Biglieri e.a. Introduction to Trellis—-Coded Modulation with
Applications. Macmillan, New York, 1991.

[3] J. Huber, U. Wachsmann. Capacities of the Equivalent Chan-
nels in Multilevel Coding Schemes. Electronics Letters, vol. 30:
pp.557-558, March 1994.

[4] Y. Kofman, E. Zehavi, S. Shamai (Shitz). A Multilevel Coded
Modulation Scheme for Fading Channels. AEU (Int. Journal of
Electronics and Comm. ), No. 6: pp.420-428, 1992.

62




Abstract - Trellis coding of Gaussian minimum shift keying (GMSK)
is considered. The structure of combinations of rate 1/2 and 2/3 binary
convolutional encoders and GMSK modulation with several values of
the parameter BT is studied by means of the so called "matched coding
approach" [4,5]. It is shown that in such connections up to 3 distinct
classes of codes can be identified each with different receiver
complexity, The results of the optimization procedure for codes
combined with GMSK are given. The results show that significant
coding gains (over 6.5 dB) are obtained. Power-bandwidth performance
of the best coded schemes is presented where it is demonstrated that
variation of BT offers another degree of freedom in the design of
communication systems.

1. INTRODUCTION

Demand for spectrally-efficient modulation techniques for use in various
communication systems and the inherent properties make Gaussian
minimum shift keying (GMSK) [1] an attractive scheme for prospective
applications. In recent years, trellis coding of modulations with memory has
gained much attention since it usually offers significant coding gains and
hence, improved power efficiency what is especially important in power-
limited systems [2, 3]. In this paper, we study application of trellis coding
technique to GMSK schemes with selected valucs of the normalized
bandwidth of the premodulation filter BT. The first objective is to analyze
how convolutional codes interact with the memory of the GMSK modulator
and how it influences the trellis of the combined receiver for the coded
scheme. We also give quantitative results of coding gains over the uncoded
signals that can be achieved due to trellis coding. Finally, we present the
performance of the best coded GMSK schemes in terms of power-
bandwidth tradeoffs and compare them to other binary systems.

The considered system consists of a convolutional encoder followed by a
GMSK modulator, AWGN channel and the optimum Viterbi receiver which
uses a combined encoder-modulator trellis for joint demodulation and
decoding. The GMSK signal is a constant envelope RF phase-modulated
signal where the information carrying phase is given by:

ot.B)= ﬂj iﬁ,»g(f—iT)dr+ ?, (¢)]

—oof=—0a

where [i,- is the transmitted symbol, and g(?) is the frequency impulse of the

form:
LT, 11,20 . T\| of2m . THl @
g+ 2) ZTI:Q[Jan(t 2)J Q(\/ln2(t+2)):l

The values of L which determine the duration of the impulse g(?) depend on
the particular GMSK scheme. For a finite length LT of g(¢) a modulator can
be represented as a finite-state sequential machine. Following the approach
of [4], a precoder T(D)=1+D was used in our system which precodes the
input to the modulator making it a feedback-frce one.

II. CONVOLUTIONAL CODES COMBINED WITH GMSK

We consider combinations of noncatastrophic convolutional codes of
rates 1/2 and 2/3 and precoded GMSK modulators. We assume that when
concatenating convolutional encoders with modulators the initial state of
both circuits is a zero state. Let S¢; denote the number of an encoder states
and Sy the number of states in the combined Viterbi receiver. The
following lemmas can be formulated for these schemes.

Lemma 1: For the GMSK, BT=0.5 and BT=0.4 modulators combined with
the rate 1/2 and rate 2/3 convolutional codes and for every S@4, there are
exactly two distinct classes of codes (4 and B) producing the required value
of Sy, namely:

4: Sg=l/4 Sy 3)
B: Sg=128y @
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Lemma 2: For the GMSK, BT=0.3 and B7=0.25 modulators combined
with the rate 1/2 convolutional codes and for every Sy24, there is exactly
one class of codes (4) producing the required value of Sy, namely:

A4 Sg=l/4 S8y )
Lemma 3: For the GMSK, B7=0.3 and BT=0.25 modulators combined
with the rate 2/3 convolutional codes and for every Sy=28, there are exactly

three distinct classes of codes (4, B and C) producing the required value of
Sy, namely:

A Sg=18Sy (6)
B Sgl/48y o)
C Sge12Sy ®)

Codes of (4), (5) and (8) arc called matched codes (encoders) [5] for the
respective GMSK modulators. The remaining codes are mismatched ones.

I1I. NUMERICAL RESULTS

A systematic search for best matched and mismatched short convolutional
codes maximizing minimum squared Euclidean distance of the coded
GMSK schemes has been performed. Table 1 contains the distances of the
best connections of GMSK signals and rate 1/2 codes. All schemes
presented in the table were obtained using matched codes. The results show
that matched codes usually outperform mismatched codes by 0.5 to 1 dB.
Coding gains over uncoded signals range from 1.3 to 6.6 dB for all
considered GMSK signals and code rates, increasing with the recciver
complexity.

The comparison of the coded GMSK with other binary systems has been
done in terms of the power-bandwidth performance. In particular, it turned
out that best rate-2/3 coded GMSK with BT=0.5 found by us perform nearly
the same as rate-1/2 coded TFM schemes of [4] for Viterbi receivers with
more than 16 states.

Table 1
Normalized minimum squared Euclidean distances of the best rate-1/2
coded GMSK schemes with optimum receivers of up to 128 states.

Sy | 4 8 16 32 64 128
0.5 3.00 4.00 591 5.97 7.91 8.87
0.4 3.00 4.00 5.83 5.95 7.83 8.77
0.3 1.12 3.00 4.88 5.77 6.77 7.67
0.25 1.19 3.00 4.82 5.64 6.64 7.52
0.2 3.00 3.92 5.19 5.68 7.04
0.15 1.56 3.02 4.56 5.07 6.10
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Abstract — It is shown that the use of Gray scram-
blers and Gray mapped signal sets are equivalent. A
search is performed for better scramblers, including
a search for scramblers with memory. Memoryless
scramblers are found to give best performance and an
explanation for this is given.

I. Introduction
Recent authors have suggested ways in which the BER of

trellis codes can be reduced. In [2] the scrambling of the infor-
mation bits with a Gray coder prior to encoding is discussed,
while in [3] and [4] the use of a Gray coded signal set mapper
is examined. We will show that these two methods are equiva-
lent. We also present a systematic technique based on bounds
for P, and P, for finding the best scrambler to be used with a
given trellis code. This search is not limited to combinatoric
circuits, we also search for scramblers with memory.

II. Algebraic Relation Between Gray Coded

Scrambler and Signal Mapper
The Gray coded 8-PSK signal set mapper used in [3] can

be represented as a naturally mapped 8-PSK signal set map-
per preceded by an n x n matrix transformation C. The Gray
coded scrambler considered in [2] precedes the generator ma-
trix and is represented by the k x k matrix transformation
S. In general, the algebraic relation between an 8-PSK trellis
code with a Gray scrambler and a natural signal mapper, and
an equivalent 8-PSK trellis code based on a Gray coded signal
mapper is

SG, = G,C (1)
where G, and G, are the generator matrices for the code with
the naturally mapped signal set and the code with the gray
coded signal set, respectively. This relationship does not hold
between all the 8-PSK codes in [1] and [3], because in [3] the
authors have found codes with a better P. than those in [1].
However, it is possible to use (1) to transform the codes of [3]
to equivalent naturally mapped codes which will have a better
P. than the Ungerboeck codes. Preceded by a Gray scrambler
the BER performance of the new code will be identical to the
Gray mapped code.

IIL. Search Method

The union bound on P, is used as a cost function to choose
the best scrambler, so that the effect of the scrambler on an
error path is weighted by its probability. Consider the effect
of some scrambler 3(-) on a sequence of correct data c; the
input to the encoder will be s(c), and if an error e occurs the
output of the decoder will be s(c) + e, and the output of the
descrambler will be s~!(s(c)+€). If the scrambler is linear we
have

s (s(e)+e) =57 (s(e) +sT (@) =ctsT (e)  (2)

so the scrambling does not affect the correct path. Thus we
wish to find a scrambler s which minimises

Py= W(s™!(e:)) Pr(e:) (3)

€; €€

where ¢ is a subset of the set e of all error paths, consisting of
only the error paths which have a significant effect on the cost
function Pp. W(-) is the Hamming weight of the error path.

For any code G there exists an equivalent systematic en-
coder matrix Gsy. such that Guye = TG. Geys has a trivial
right-inverse of degree 0 whereas G generally does not. This
means that the error paths produced by G;yls will have lower
degree than those produced by G731, hence, while scramblers
S; and S, give identical performance with generator matrices
Geys and G, respectively, scrambler S; will have lower degree
than S». Thus the search for the best scrambler for the code
generated by G should involve first finding the error paths for
G.sys. The best scrambler S for Gys can then be found, and
the best scrambler for G will then be ST.

TIV. Search Results

A search was performed for the best scrambler for v =
3 systematic Ungerboeck codes with k varying from 2 to 5.
In all cases a memoryless scrambler was found to give best
performance. The reason for this can be seen if we look at
a list of error vectors ordered according to probability. It is
clear that the best memoryless scrambler found will reduce the
Hamming weight of all vectors, producing an almost ideal list,
i.e., vectors with high probability have low Hamming weight
and vice versa. To get further improvement we must permute
a small number of vectors, leaving most fixed. However for a
k-dimensional vector space there are at most k invariant sub-
spaces, so it is clear that we cannot change a small number of
vectors. If we were to use a nonlinear scrambler we could do
this, but then (2) would not hold.

The best scrambler in all cases was found to reduce the
BER by approximately 1/3. This gain is only significant in
applications where the gradient of the BER curve is small,
such as low Ey/No operating points or on fading channels.
For example, the Ey/No required to achieve a BER of 102
with the v = 3 8-PSK Ungerboeck trellis code is reduced by
0.25 dB when a scrambler is used.
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Abstract — In this paper we focus on the issue of dis-
tribution of dimensions in time, describing a method,
suited to different types of envelope functions used
for modulation, that can generate an almost arbitrary
distribution of dimensions in time with spectral ef-
ficiencies near the Nyquist limit. Subsequently, we
propose a modulation scheme whereby the distribu-
tion of dimensions in time is used to carry additional
information in the same BandWidth (BW).

I. INTRODUCTION

The dimensionality theorem states that using shift orthog-
onal functions for modulation with shift period A and band-
width B, in a T seconds interval we can generate at most 2BT'
dimensions [1]. We are interested in how these dimensions are
distributed in time. Classically we have had two options: (1) if
A =T, the best basis functions to use are prolate spheroidal
wave functions; (2) if A << T, it is natural to use shift or-
thogonal functions such as the raised cosine shaping pulses, or
the recently proposed scaling functions and wavelets [2). The
purpose of this paper is to present systematic methods based
on the theory of wavelets and filter banks to generate almost
arbitrary distributions of dimensions in time, achieving the
highest spectral efficiency in a given BW.

II. GENERATION OF DISTRIBUTION OF DIMENSIONS

We describe here the basic steps of a procedure for the gen-
eration of distribution of dimensions. In the proposed method
we use two shift orthogonal frequency overlapping functions,
q(t) and w(t), where g(t) is a lowpass function while w(t) is
a bandpass function. Both g(t) and w(t) are shift orthogonal
with period A. ¢(t) can be either a scaling function [2] or an
even or odd shift orthogonal function [3]. w(t) will be, respec-
tively, the function w(t) = v/2¢(t)sin(2xt/A) or the wavelet
associated with the scaling function g(t).

Step 1: the overlap space between ¢(t) and w(t) is isolated
by filtering the portion of w(t) that falls on the BW of ¢(t).
For this purpose, either wavelet packets or nearly ideal low
pass filters can be used, depending on the characteristics of
the modulation waveforms. This operation generates a func-
tion o(t) which is shift orthogonal with shift period LA (L is
an integer). spanning a space occupying the same BW as g(t)
yet completely orthogonal to it. This function can be used to
generate additional dimensions in the same BW as ¢(t).
Step 2: the space spanned by ¢(t) can be split into orthogonal
frequency channels using the combination of wavelet packets
and multiplicity-M wavelets. The overlap space spanned by
o(t) can be similarly partitioned. This orthogonal frequency
channelization can be extremely flexible [2]. These results
are subsequently used to introduce a novel coded modulation
scheme based on the concept that the way the time-frequency
plane is partitioned into orthogonal frequency channels can
carry information.

!This work was partially supported by M.U.R.S.T.

IT1. APPLICATION TO CODED MODULATION

Suppose we have a two-state modulator which can choose
between the shift orthogonal function ¢(t) with shift period A
(state 00) and two shift orthogonal functions ¢:(t) and ¢,(t)
with shift period 2A (state o). Then the dimensional rate in
a given BW is fixed, but how the dimensions are distributed in
the time-frequency plane differs for states oo and ;. Consider
parsing the source symbols an into non overlapping blocks.
The state of the modulator can be controlled by an extra
binary data stream, whose rate matches the symbol block rate.

The switching of the basis for two adjacent blocks could
lead to ISI at the boundary of the adjacent blocks. However,
given the state of the modulator, this ISI is deterministic and
can be remedied.

The coherent demodulator at the receiver can either oper-
ate following a Maximum Likelihood (ML) detection rule, or
performing hierarchical (suboptimal) demodulation.

The ML detection rule can be formulated to determine the
state of the modulator from the observation of the received
signal associated with the InterSymbol Interference (ISI) free
portion of the blocks. Efficient search for the ML estimate of
the a, can be performed using the Viterbi algorithm with state
complexity of A%*(5+1) (assuming that L is odd), where A is
the alphabet size of the sequence @, and L + 1 is the number
of samples of the scaling and wavelet vectors [2]. Once the
sequence a, is detected, assuming that the receiver operates
with very low error probability, we can use the ML estimated
data vector @ to estimate the modulator state.

A practical alternative may be to use the correlation prop-
erties of the sampled outputs of the Matched Filters (MFs)
at the receiver. Suppose the receiver employs one set of MFs
for each state of the modulator. Then only the outputs of
the correct MFs will be uncorrelated. Hence, time-averaged
auto-correlation of the output samples of the MFs can be used
to determine the modulator state. Once the modulator state
has been estimated for a given block, the output of the correct
MF is sampled to demodulate the received sequence for the
portion of the block that is not corrupted by ISI. The portions
of the block that may experience ISI are demodulated from
the knowledge of the modulator state in the previous and the
present blocks.

All the concepts presented above can be generalized to the
case where there are other orthogonal channelizations of the
available spectrum and can further be combined with channel
coding.
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Abstract — We show that the performance of an M-
Algorithm detector for linear partial response coded
modulation depends critically on phase and is charac-
terized by the partial energy function of the encoder.

I. INTRODUCTION

Many practical communication channels may be adequately
described by an equivalent discrete time model

rr = hoax + Z hiak—i + nk (1)

=1

where ax represents the data symbol, hx represents an im-
pulse response, nx an additive white Gaussian noise (AWGN)
component and m represents the channel memory. The above
discrete time model can be used to construct a trellis. Max-
imum likelihood sequence estimation may be performed by
searching this trellis with the Viterbi Algorithm (VA), but its
complexity grows exponentially with the length of the channel
impulse response.

A number of reduced search techniques like the M-
Algorithm (MA) have been developed to achieve near opti-
mum performance at a fraction of the optimum receiver com-
plexity. In applications like mobile communication, the phys-
ical channel must often be characterized as a non-minimum
phase channel. The purpose of this work is to characterize
the effect of non-minimum phase channels on reduced search
decoding complexity.

One feature that distinguishes channels having identical
spectra and free distance but different phase is the partial
energy given by E(n) =3 ;_; |[R(k)|?. If E(n) represents the
partial energy of any finite duration channel kh(n), then

Emaz(n) £ E(n) £ Emin(n) )

where Emin(n) and Ernax(n) represent the partial energies of
the minimum and maximum phase channels having the same
magnitude frequency response as h(n).

II. DECODER SIMULATION RESULTS

Channel phase effects were determined by performing MA de-
coder tests on different channels with the same autocorrela-
tion. The results for one representative 10 tap channel class(2]
having one real zero and 4 pairs of complex conjugate zeros,
are described here. The class is specified by the normalized

99% bandwidth (NBW) and minimum distance loss (M DIL)
d?

measured by M DL = 10log,, -5==.

The minimum phase channel, maximum phase channel and
4 mixed phase channels belonging to this class were chosen for

performing MA tests. The partial energy curves and column

1This work was partly supported by General Electric Corporate
Research and Development Center, Schenectady, New York.
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Figure 1: (a) Partial energy curves (b) Distance profile for
selected channels of 10 tap class (NBW=0.36, MDL=0.19
dB).

Channel albl c d | e f
Number of paths (M) || 4 [ 5 [ 18 | 32 | 32 | 128

Table 1: MA decoder results for 10 tap equivalence class.

distance profiles of these channels are plotted in Figures 1(a)
and 1(b) respectively. MA simulations were carried out on
these channels and the complexity was measured in terms of
the minimum number of paths (M) needed by the decoder at
each tree level in order to achieve near-MLSE performance.
The complexity required by each of the channels is summa-
rized in Table 1 . The minimum phase channel (e) needs the
lowest value of M (4 paths) while the maximum phase channel
(f) needs the highest complexity (M=128 paths). Channels
that have similar partial energy curves turn out to require
the same complexity. The partial energy curves of any one
channel class show groups of channels having similar curves
and the complexity required by the MA decoder increases as
we move from one group to another one lower in the partial
energy picture.

We have analyzed many channels (i.e., sets of {h&}) and
all show a behaviour[1] similar to Figure 1, except that the
number of partial energy groups varies from 1 to 8. A superior
partial energy curve and distance profile guarantees lower MA
decoder complexity, but we see that partial energy serves as a
better indicator of performance than the distance profile.
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Abstract -In this paper we investigate applicability of simplified
decoders of convolutional codes to the case of multilevel coding
[1]. System behaviour is examined by means of minimum
distance analysis and simulation.

I. PROBLEM STATEMENT

The objective of our research is to investigate applicability of re-
duced complexity algorithms for the decoding of multilevel codes
combined with multi-resolution QAM, as proposed for the terres-
trial transmission of HDTV signals in Europe.

Multistage decoder shown in the Fig. 1 will be examined in the
paper. In this figure only the inner level of coding and modulation
is shown. Other elements of the system are omitted [3].

" Simplifications of the receiver are based on two different ap-

proaches: on the M-algorithm [4], which is the optimum solution

for searching a limited part of trellis, and RSSE algorithm which is

not optimum but is easier to build in hardware than M-algorithm.

Both of these solutions consist of using a smaller number of states

than that of the Viterbi algorithm.

The following benefits can be potentially achieved via the simpli-

fied algorithms in the receiver:

a) reduction of complexity of the decoder (reduction of the
total cost of the system)

b) additional performance gain, for the fixed receiver comple-
xity by the proper choice of the code structure in the trans-
mitter.

The main purpose of the paper is to see if there is an additional

coding gain achievable via the use of the multistage decoders based

on the M-algorithm and RSSE [4] approach and if so, how large it
is. Analysis is done on the basis of asymptotic coding gain

(minimum distances). Numerical results of computer simulation are

also provided.

II. NUMERICAL RESULTS

Firstly, we examine the degradation of performance due to simplifi-
cations of decoding. It has been done by simulations. An example
of numerical results is shown in the Fig. 2. These are simulated bit
error rates for convolutional codes of rate rg=1/3 and r;=2/3 de-
coded by RSSE algorithm, for the system of Fig. 1. Losses in this
case are about 1 dB for reduction from 64 states to 32 states for
Gaussian channel. Results for Rayleigh channel are also provided.
Typically, it turns out that for Rayleigh channel and complexity
reduction greater than 2, losses are significant (greater than 3 dB).
For concatenated coding systems very important to investigate are
the properties of error bursts at the output of the decoder. We have
analyzed the distribution of the average value of burst length.
Numerical results for different rates and complexity reduction are
provided for Gaussian and for Rayleigh channels. Typically, the
length of bursts at the output of decoders with reduced complexity
increases with decreasing number of the decoder states.
Additionally, for multistage decoding average value of burst length
are up to 3 times greater than for the case of single stage coding.
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Fig. 1. Block diagram of multistage decoder of multilevel coding of 4
QAM.
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Fig. 2. Simulated bit error rate for RSSE decoding of multilevel
convolutional codes with rates 1/3 and 2/3 combined with 4
QAM.

Table 1. Comparison of the values of average burst length for
simplified decoding of single level convolutional codes
(r=1/3,r=2/3) with multilevel coding. Results for constant value of
bit error rate (BER=10'3) and different number of states of the
decoder Vrec.

Vrec [states] 64 32 16 8

B,, | r=1/3 RSSE AWGN 10 20 50 | 150
[bits] | =2/3 RSSE AWGN 10 60 | 150 | 300
(1/3.2/3) RSSE AWGN 30 100 | 300 } 750

# This work was partially sponsored by the following grants: RACE R2082, KBN-8550401905.



A Novel General Approach to the Optimal Synthesis of Trellis-Codes
for Arbitrary Noisy Discrete Memoryless Channels
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Abstract - A new general criterion for the optimal design of
(possibly) time-varying and nonlinear trellis-codes for reliable
transmission of digital information sequences over arbitrary
(possibly) time-varying Discrete Memoryless Channels
(DMCs) is presented. The criterion is derived on the basis of
new tight generally time-varying analytical upper bounds
developed for the performance evaluation of MAP decoders
with finite decoding constraint-lengths which minimise the
symbol-error probability. New procedures related to the
proposed criterion are also presented, allowing a direct
construction of good trellis-codes for any arbitrary DMC and
for any assigned value of the decoding constraint-length.

SUMMARY

The common design criterion for trellis-codes requires the maximisation
of the minimum Hamming distance (the so-called "free-distance") between
codewords. Although this criterion is largely used in practical applications,
its validity is not quite general. In fact it is well known that, almost in
principle, it is optimal only in the case when the employed trellis-code is
linear (i.e., it is a convolutional code), the assigned DMC is time-invarying,
binary, symmetric and with a very small cross-over probability and a
sequence Maximum Likelihood (ML) decoder with infinite decoding
constraint-length A is present at the receiver site [1]. Barring for this case,
the general issue of "good" trellis-code design for arbitrary noisy DMC
channels seems not yet well explored in the literature.

In this contribution a novel general criterion is presented for the optimal
design of trellis-codes (in general, nonlinear and time-varying) for arbitrary
noisy DMCs (in general, non-binary, non-symmetric, time-varying and
characterised by an arbitrary error-rate) when a decoder which minimises the
symbol-decoding-error probability (i.e., a symbol-by-symbol MAP
decoder) with an assigned and limited value A of the decoding constraint-
length is employed.

The application environments of the proposed criterion are larger than
that pertaining to the other criteria known in literature. In particular, the
validity of the mentioned criterion is pot restricted to the class of linear
trellis-codes (i.e., of the convolutional codes) and of symmetric DMCs;
moreover, it allows to take into account explicitly the value A assigned to the
decoding constraint-length. The presented criterion is based on the
following (generally) time-varying upper-bound derived in [3] as an
application of the Chebyshev inequality to the performance evaluation of
symbol-by-symbol MAP decoders:

PE® # Emapk [k+4) S2 TH{S 1k+4)}, k21. (1)

In (1) the Markov chain {§(k), k 2 1} is the so-called "state-transition
sequence” of the trellis-encoder (defined as in [4,Sect.II]) and
{&MAp(k|k+A), k 2 1} is the corresponding (optimal) MAP estimate
sequence (computed recursively as in [2]) when the decoding constraint-
length takes on the value A. Moreover, Tr{ S(klk+A)} is the trace of the
average covariance error matrix S(k’k+A) of the so-called "fixe-lag basic

fully general criterion for the synthesis of good trellis-codes for any
assigned value of A and for any arbitrary noisy DMC.

Procedures based on the described criterion for the construction of good
trellis-codes with assigned rate R=b/n and encoding constraint-length L
(defined as in [1]) have been implemented via computer [3]; for illustrative
purposes, the trellis diagrams of the best trellis-codes with rate R=1/2 and
L=2 obtained by means of an application of the mentioned construction
procedure are reported in the Figures for some simple cases of stationary
binary DMCs with transition probabilities p=P(1(1) and q=P(0l0). The two
cases A=0 and A=2 have been considered in (a),(b),(c) and (d),(e),(D
respectively. In the Table the steady-state value of the sequence
{Tr{S(klk+A)}} (denoted by Tr{S(coloo+A)}) is reported, together with
the corresponding average bit-error-rate (BER) (evaluated by Montecarlo
simulations) of the encoders generating the presented codes (the bold
numbers denotes that the code has been optimized for A=0 or A=2).

On the basis of our analysis [3], some conclusions can be drawn:

- for an assigned DMC, the best trellis code for the case A=0 not always
agrees with the best for A=2; in fact, in general, the topology and/or the
labelling of the optimal trellis-code change with the value assumed by the
decoding constraint-length; moreover, a value of A nearly equal to the
encoding constraint-length L results in a negligible degradation wrt the
optimum performance (ideally obtained for A--> oo);

- the topology and/or the labelling of the optimal trellis-code strongly depend
on the statistical properties of the assigned DMC.
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smoother” [2] and the sequence {S(klk+A), k > 1} can be recursively
computed with respect to (wrt) the index k on the basis of a Riccati-type

equation (formally similar to the well-known equation employed for the

S, % NIB 1o s, I8, 90 S,
Ol B 0
11 1 11
s, 10 s, |[s, A s,|[s, 10 S,
sc 00 so So‘ 1 so S a 11 So
1 00
d) e) f)
01 oL 01
s, 10 s ||, 10 s||s. 10 s,
Tr Tr{ S (ooloo BER BER
P 9 ) (S(eol)} | 42} (o0lo0) | (ooloo+2)
a)] 0.999 | 0.999 | 1.01 -3 3.86 -4 9.25 -4 3.60 -4

computation of the mean square error performance of a conventional

b)| 0.995 §0.9999] 4.42 -4 4.42 -4 1.00 -4 1.00 4

Kalman filter), as shown in [2]. It must be remarked [3] that the sequence

9l 095 | 098 | 4.01 -2 259 -2 | 2.71 -2 1.67 -2

{Tr{S(kIk+A)}} jointly depends on the sequence of the probability

d)] 0999 ] 0999 | 1.02 -3 1.84 -5 | 930 -4 1.05 -5

transition matrices of the assigned noisy DMC and on the set of the
codewords of the employed trellis-code; therefore, the minimisation of the

e) | 0.995 10.9999| 144 -3 8.34 -5 130 -3 | 3.50 -5

f)] 095 } 0.98 435 -2 1.95 -2 3.12 -2 7.60 -3

upper-bound sequence of (1) wrt the admissible sets of codewords gives a
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Identification via Compressed Data*

Rudolf Ahlswede!, En-hui Yang?, and Zhen Zhang?®

I. INTRODUCGTION
In this paper, a combined problem of source coding and iden-
tification is considered. To put our problem in perspective,
let us first review the traditional problem in source coding
theory. Consider the following diagram, where {X,}52, is an

(x,} binary data of [e
rate R

Figure 1: Model for source coding

1.1.d source taking values on a finite alphabet .¥. The encoder
output is a binary sequence which appears at a rate R bits
per symbol. The decoder output is a sequence {X,}{° which
take values on a finite reproduction alphabet ). In traditional
source coding theory, the decoder is required to be able to re-
cover {X™}7° completely or with some allowable distortion.
That is, the output {X,}$° must satisfy
n

nHY (X, Xi) < d (1)
i=1

for sufficiently large n, where p: ¥ x Y — [0, +00) is a dis-
tortion measure and d > 0 is the allowable distortion. The
problem is then to determine the infimum of rate R such that
the system shown in Fig.1 can operate in such a way that (1)
is satisfied. From rate distortion theory, this infimum is given

by the rate distortion function of the source {X,}{°.
Let us now consider the system shown in Fig. 2. The se-

{X;} binary data of
rate R .

{r,}

Figure 2: Model for joint source coding and identification.

quence {Y,}7° is a sequence of i.i.d random variables taking
values on Y. Known {Y,}, the decoder is now required to be
able to identify whether or not the distortion between {X,}
and {Y,} is less than or equal to d in such a way that two
kinds of error probabilities satisfy some prescribed conditions.
The problem we are now interested in is still to determine the
infimum of rate R such that the system shown in Fig.2 can
operate in this way.

II. FORMAL FORMULATION OF PROBLEM
Let {(Xn,Yn)}i° be a sequence of independent drawings of
a pair (X,Y) of random variables taking values on X' x Y
with joint distribution Pxy. Fix 0 < d < Ep(X,Y). An
nth-order identification (ID) code C, is defined to be a triple
Cr = (fn, Bn, gn), where By, C {0, 1}* is a prefix set, f,(called
an “encoder”) is a mapping from X" to B, and gn(called a

*This work was supported in part by NSF Grant NCR-9205265.

IFakultaet fuer Mathematik, Universitaet Bielefeld, 4800 Biele-
feld 1, Germany

2Dept. of Math., Nankai University, Tianjin 300071, P.R. China.

3Commun. Science Institute, Dept. of EE-Systems, University
of Southern California, Los Angeles, CA 90089-2565.

“decoder”) is a mapping from Y" x B, — {0,1}. When C,
is used in the system shown in Fig.2, its performance can be
measured by the following three quantities: the resulting av-
erage rate defined by r.(Cn) = En~'(the length of f,(X™)),
the first kind of error probability defined by p.i(Cn) =
Pr{gn(Y", fa(X™)) = 0|pa(X™,Y") < d}, and the second
of error probability defined by pez = Pr{gn(Y™, fu(X™)) =
Hpa(X™,Y™) > d}.

Let R € [0,400), a € (0,+00] and B € (0,4+00]. A triple
(R, o, B) is said to be achievable if for any € > 0, there exists
a sequence {Cn} of ID codes, where C, = (fn, By, g¢.) is an
nth-order ID code, such that for sufliciently large n,

™(Cr) S R4+¢€, pe < 9=™2=9) and Pez < 9—mA—9) ,
where as a convention, & = +oo(f = +oo, resp.) means
that the first(second, resp.) kind of error probability of C,
is equal to 0. Let R denote the set of all achievable triples.
In this paper, we are interested in determining the closure
R of R. Specifically, we define for each pair (a, B), where
a, B € [0, +o0],

Ry (a,,d) = inf{R|(R, o, ) € R} .
Our main problem is then the determination of the function

Ry (e, B,d).

ITI1. MAIN RESULTS

Assume that X and Y are independent. For any 0 < d <
Ep(X,Y), define B(d) by B(d) = inf D(P||Pxy), where the
infimum is taken over all distributions P on ¥ x Y such that
ZI’y P(z,y)p(z,y) < d. Let U be a random variable tak-
ing values on some finite set /. Let Pxy denote the joint
distribution of X and U. For any o > 0, define

E(Pxu,a,d) = inf{D(Py||Py) + 1(U;Y)},
where the infimum is taken over all random variables Y tak-
ing values on Y such that Ep(X,Y) < d and D(P;||Py) +
I(XU;Y) < B(d) + a. Here we make use of the convention
that the infimum taken over an empty set is +o0o. For any
B > 0, let R(Px, Py,a,3,d) be the infimum of I(X;U) over
all random variables U such that £(Pxy, @, d) > 3, and let

R(Px,Py,a,0, d) = ﬁlilg+ R(Px,Py,a,8,d) .

The following theorem formula for

R;('Y(ayﬁ)d)'
Theorem 1 For any 0 < d < Ep(X,Y), 0 < 8 < A(d), and
@ € (0, 4+00], the following holds

Rxvy(a,3,d) = R(Px, Py,a,8,d),

gives a general

where
R(Px, Py,a,B,d) = ”’lin}s_ R(Px, Py,a,B',d) .

The converse part of Theorem 1 is related to the general
isoperimetric problem. During the process of proving the con-
verse part, we develop a new powerful method for converse-
proving in multi-user information theory. For more details,
please refer to [1].
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Asymptotics of Fisher Information under Weak Perturbation
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Abstract — An asymptotic expression is derived for
the Fisher information of the sum of two independent
random variables X and Z. when Z. is small, under
some regularity conditions on the density of X and
conditions on the moments of Z.. Using this result
for the case Z. = ¢Z, some asymptotic generalization
of De Bruijn’s identity is obtained.

I. INTRODUCTION

The Fisher information of a random variable Y with absolutely
continuous density fy is given by

_ [T [rw]
J(Y)_/_oo[fy(y)] fr(y)dy. (1)

It plays an important role in information theory and statistics.
Under certain regularity assumptions, the Fiisher information
of an additive noise random variable characterizes the main
term in the asymptotic expansion of the Shannon mutual in-
formation between the input and output signal of an additive
noise channel when the input signal is weak [1,2,3]. Fisher
information also appears in the well-known Cramér-Rao in-
equality.

II. PRoBLEM FORMULATION

Y = X+7, with X and Z independent random variables,
an explicit calculation of the integral (1) is impossible in gen-
eral. Therefore, it is of interest to investigate the asymptotic
behavior of J(Y), when the perturbation Z of X is weak in
the sense that Z = Z. and E(Z2?) = ¢ — 0. In this paper
we derive an asymptotic expansion for the Fisher informa-
tion J(X + Zc) in terms of the probability density function
(pdf) of X and higher moments of Z, if certain conditions
are satisfied. The similar problem of deriving an asymptotic
expression for the differential entropy 2(X + Z.) of the sum of
two independent random variables X and Z. when Z. is small
has been investigated in [4].

III. MAaIN RESULT

Without loss of generality we assume E(X) = E(Z.) = 0.
Suppose E(Z2) = ¢, and E|Z./e|™*” < ¢ < oo for some
integer n > 2, some constant ¢ and 0 < v < 1. Let X have
a bounded pdf fx(z) = f(z), which has bounded continuous
derivatives f(k)(x) for k = 1,...,n + 2. Then, under some
additional conditions on f(x) (which hold for a large class
of smooth densities), and if X and Z. are independent, the
following asymptotic expansion holds as ¢ — 0 :

J(X +Z) = J(X) + An(X,AB(Z}) +o(™)  (2)

for some integer m > 1. An(X,{E(ZF)}) depends on f(z)
and E‘(Zf),k =2,...,m. For m = 2, (2) becomes

J(X+2Z) = J(X)+ LX) +o(?), €—0, (3)

where L(X) is an integral expression involving f(z) and its
first three derivatives. For example, if X is Gaussian with
variance o, the above expansion yields :

2

J(X 4 2) = o — S 4 o). (4)

02 ot

IV. SOME ASYMPTOTIC GENERALIZATION OF DE
BRULIN’S IDENTITY

For the special case Ze = ¢Z the asymptotic expansion (2)
can be written as

J(X +¢Z) = J(X) + Bu( X, {E(Z)}{e"}) +o(e™)  (5)

where B,, depends on f(z), the moments E(Z*) and the pow-
ers €¥,2 < k < m. Also, when Z has a Gaussian distribution
with unit variance, X has a pdf with finite variance, and X
and Z are independent, De Bruijn’s identity holds :

dh(X +eZ) 1

Thus, by using the expansion (5) if Z is Gaussian and substi-
tuting it in the integral version of (6), we obtain an asymp-
totic expansion for A(X + €¢Z). This expansion coincides with
the expansion for k(X + ¢Z) obtained in [4] if Z is Gaussian.
Moreover, by comparing both the asymptotic expansion for
h(X + €Z) in [4] and the one derived here for J(X + ¢Z) for
non-(Gaussian Z, we obtain some asymptotic generalization of
De Bruijn’s identity to the case where Z is non-Gaussian.
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I. INTRODUCTION

The well known Brunn-Minkowski Inequality (BMI), is one of
the basic inequalities in geometry. Its formal statement is the
following. Let 4; and A; be two sets in R4, Then,

i (A4 A2) T4 2 (A (A2) @)

where p(A) = [, e 4z is the (d-dimensional) volume of A,
and Ay + Az = {z+y : 7t € Ax,y € An} is the Minkowski
sum of A; and A,. This sum may be interpreted as the geo-
metric convolution of the two regions. Equality in (1) holds if
the two regions are convex and proportional, e.g., if they are
balls or cubes (with parallel edges). For d = 1, this condition
is reduced to the simple case where A; and Az are intervals
(and not, e.g., a union of intervals).

The BMI is dual in some sense to the Entropy-Power In-
equality (EPI) [1], which lower bounds the entropy-power of
the sum of independent random variables. In {2] a matrix
form for the EPI was derived, and some of its applications
have been pointed out. Analogously, we derive in this work a
matrix form for the BMI, and discuss its applications.

II. LINEAR TRANSFORMATION OF SETS AND THE
MaTrIX BMI
We first introduce the matrix form of the Minkowski sum.
Let A* = (A;...An) be a vector, whose n components are
d-dimensional sets. We define a linear transformation of

A1....An as

TA={Tz : zi € Ai fori=1...n}, (2)
where T is an m X n matrix. In particular, .4 means scaling
the coordinates of A by the scalar . Note that TA is an
md-dimensional shape. Denote the volumes of the shapes by
u(A;i) = pi,i = 1...n. Following simple laws of integration,
the md-dimensional volume of T A, in the particular case m =
n, is p(TA) = |T|% - p(A) = |T|* -1}, pi , where | .| denotes
the absolute value of the determinant. For the general case,
we suggest the following matrix generalization of the BMI:

Theorem 1 (Matrix-BMI): Let E = (.Zl.;f..) be a
vector of d-dimensional cubes whose edges parallel the azes,
and whose volumes are the same as of A1 ... An, t.e., p(Ai) =
wi,i=1...n. Then

@
W (@) 2w (T2)" = 3 (F ®)

i=1

where T =T - L, L is an n X n diagonal matriz whose diago-
nal elements are u:/d vl u},/d (the edges’ lengths of the cubes

Ar... Nn), and {f‘;,i: 1... (:)} is the set of all possible

OThis research was supported in part by the Wolfson Re-
search Awards, administered by the Israel Academy of Science and
Humanities.

m x m sub-matrices of f, obtained by choosing m out of the
n columns of T'.

For m = 1, (3) reduces to pu (E:;l t.'A.') >
Yo, ti|u}/4, ie., to the regular BMI (1). Equality in (3)
holds in each one (or in a mixture) of the following cases: if
A1 ... A, are cubes whose faces parallel each other; if (after
removing the all zero columns of ’f, if any) m = n; or if T
does not have a full row rank, where then u(TA) = 0. The-
orem 1 is proved via a double induction over the dimensions
of T, using a conditional form of the BMI, analogously to the
proof of the matrix-EPI in [2].

In order to appreciate the usefulness of Theorem 1, con-
sider the following example. Let A = (A1...An)" and
B =(B:i...B,)", where A; ... Ay, B ... B, are d-dimensional
shapes of unit volume, and let T1 and T2 be n x n matri-
ces. Consider the volume of the sum T3 A + T2B. A direct
application of the regular BMI (1) gives

1/d

n (TIA + Tz_B_)l/nd > #(TIA)I,”d + u(Tz_é)l/nd
= T+ |BP". (4)
On the other hand, we may view the sum T1.A+72B as a trans-
formation of the 2n-dimensional vector (A;...Aq, Bi...Bx)

by the n x 2n matrix T' = (T1;T2). Theorem 1 may then be
used to obtain

)

ST )

i=1

~ Al
B(BA+TE) > 4 (BA+T:E)

But, by Theorem 1, for A;...By cubes of unit volume, (5)
becomes an equality, while (4) remains an inequality (unless
Ty and T are proportional). We conclude, then, that (5) is a
tighter lower bound than (4).

As in the case of other information-theoretic inequalities
[1], the new matrix BMI can be used to derive interesting
inequalities for determinants. One such example is the in-
equality just discussed between the right hand sides of (4)
and (5). To obtain another inequality, we apply the matrix
BMI to a linear transformation of rectangular parallelepipeds
while substituting the expression for its exact volume (which
is computable in this case). Finally, we note that the matrix
BMI can be used to lower bound the volume of a projection
of a lattice cell, and so it can find applications in calculating
the effective number of codewords of lattice constellations or
lattice quantizers satisfying spectral constraints.
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Consider the following model of a permutation channel. In
each time unit two sources produce one bit each (0 or 1 with
probability P(0) = P(1) = 0.5). These two bits arrive at an
organizer, who in the same time unit has to output one bit.
The other bit he may store in some memory device. If it is
possible the output bit must be a 1. So if the arriving bits are
11, 10 or 01, then the organizer will send a 1 for sure. If both
sources produce a 0, then the organizer may send a 1, which
is stored in the memory device (and the size of the memory
will be reduced by one bit in this case). If this is not possible,
then the organizer must send a 0.

A natural question is: How much influence does the size
of the memory have on the behaviour of the sequence of bits
transmitted by the organizer? As a simple measure for the
influence of the memory we consider the expected value of the
first occurence of a 0 in this sequence.

If there 1s no memory at all, then this expected value
is 4, since in this case we have a geometric distribution with
parameter 0.25 as probability that a 0 is transmitted in each
time unit.

If the memory device can store every incoming bit (i.e. ,
the size of the memory is linear in time), it turns out
that this expected value does not exist. To see this, observe
that the bits produced by the two sources yield a sequence
(b(s))521 of 1’s and -1’s, if we represent a 0 by a -1 and let
the bits produced by the first source take the odd positions
and the bits produced by the second source take the even
positions in the sequence. Two necessary conditions for the
occurence of the first 0 at time ¢ are i)zjgl—l) b(i) =0 (i. e,
the memory is exhausted at time ¢t — 1) and ii) all partial sums
Zj(:l;l) b(j),i = 1,...,t — 2 are nonnegative (i. e., no 0 has
been transmitted before). By the Ballot Theorem the number
of {1, —1}-sequences fulfilling i) and ii) is just the number
a7 (it) . Since there are 4° possible sequences (b(5))3; until
time ¢, the probability that the first 0 occurs at time ¢ is

2

t
ATy +‘1))4 . By Stirling’s formula (%) ~ 4—\;; and the expected

2t
value for the first occurence of a 0, Z;’:l %ﬁ% - t does not

exist, since the single summands are about v/t.

If the size of the memory is limited by some con-
stant k, the probability for the occurence of the first 0 at time
tis 5(0_:1:‘21’ where a(0,t — 1) is the number of all sequences
produced by the two sources leading to the all-one sequence of
bits transmitted by the organizer with memory size 0 at time
t—1.

Analogously, a(m,t) is defined for every time ¢t = 1,2,...
and memory size m = 0,...,k. In each time unit the source
outputs 01 and 10 do not change the size of the memory, 00
decreases the memory by one bit (and is forbidden for m = 0),
and 11 increases the memory size by one bit if m < k (and
does not change the memory if m = k). So we obtain recur-
sion formulae for the numbers a(m, t) which can be written in
matrix form as

a(0,t) a(0,t — 1)
: = A - :
a(k,t) a(k,t —1)
2 1 0 0 0 O
1 2 1 0 0 O
where Ax = Lo Lo
0 0 O 1 2 1
0 0 O 0 1 3

The behaviour of a(0,t) is essentially determined by the
largest eigenvalue of the matrix Ay which can be calculated
to be 4 - cos%ﬁn’).

So for size of memory bounded by £k = 0,1,..., we obtain
a sequence of expected values for the occurence of the first 0
(Ex)rzo with

= a(0,t —1) = 2 1
Ey = —_ L .t~
k Z e ;(cos (4k+6

t=1

ﬂ))t—l't'z<00

In the special case k = 1 it turns out that a(0,t) = 5" - Fy,,
where F5; denotes the 2¢-th Fibonacci number.

Since the sequence (Ei)g>, is divergent, it is immediate
that the expected value for the occurence of the first 0 in the
sequence of bits transmitted by the organizer does not exist,
if the size of the memory is bounded by a function f(t)
which exceeds every k > 0 from some &, on.

One might also consider the general case in which in each
time unit s letters from a finite alphabet arrive at the channel
and ¢t < s letters have to be transmitted. For s = ¢ = 1 and
constant memory size this model has been discussed (under
different aspects) in [1] (see also [2]).
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Abstract — We have shown that if one invests in the
outcome of a random variable X, where investment
consists of gambling at any odds, then every bit of
description of X increases the doubling rate by one
bit. However, if the provider of the information has
access only to V, a random variable jointly distributed
with X, then this maximal efficiency is not generally
possible. We find the increase A(R) in doubling rate
for a description of V' at rate R for the jointly Gaussian
and jointly binary cases. We investigate the extension
to multivariate Gaussian random variables. We prove
a general result for the derivative of A(R) at R = 0.

‘We then consider the problem in which there are k
separate encoders and each observes a random vari-
able V; correlated with X. We find how efficiently
these encoders, without cooperation, help the investor
who is interested in X.

SUMMARY

Suppose one gambles on the outcome of a random variable X.
The investor distributes his wealth according to b(z) and the
investment pays odds of o(z) for one. Also suppose that the
description of another random variable V, which has a known
joint distribution with X, at the rate of R bits is allowed. Let
A(R) be the maximum increase in the doubling rate from no
description to a description of rate R. It can be seen that
A(R) is a concave and nondecreasing function of R. We can
show [2] that

A(R) = max

g } I(V; X).
p(Blv,e): I(ViV)<R, VoV aX

We define initial efficiency as the derivative of A(R) at the
origin. Initial efficiency is the maximum possible increase in
A(R) per bit of description. For V = X, A(R) = R; hence
the efficiency is 1. However, for a general V, the efficiency is
generally less than 1. We find A(R) and examine the efficiency
of the jointly binary and Gaussian cases.
Theorem 1 Suppose V and X are both Bemoulli(%) ran-
dom vartables associated by a binary symmetric channel with
crossover probability p. The A(R) curve is given by

(R7 A(R)) = (1 - h(a)7 1- h(Ot * p))

where 0 < o < 1, h is the binary entropy function and % is
the cascade operation.

We use a lemma by Wyner and Ziv, known as ‘Mrs. Ger-
ber’s Lemma’ [4] to prove the optimality of the descriptions
in the above theorem. The initial efficiency can be calculated
as (1 — 2p)2.

!This work was supported by NSF Grant NCR-9205663, ARPA
Contract J-FBI-94-218 and JSEP Contract DA AHO04-94-G-0058.

Theorem 2 Suppose X and V are jointly Gaussian with cor-
relation p. Then

1 1

The proof of optimality in the Gaussian problem requires
a lemma by Bergmans, which is a conditional version of the
entropy power inequality [1]. We note that the initial efficiency
is p2.

A natural generalization of this theorem is to multivariate
Gaussian. Suppose V™ ~ N(0,Kv), Z™ ~ N(0,Kz), V™ and
Z" are independent and X" = V™ + Z". By changing the co-
ordinate system , we can obtain diagonal covariance matrices
and hence transform the problem to one on parallel subchan-
nels with a total rate constraint. The solution is given by
water-filling in the entropy domain. We distribute the total
rate so that the derivative of A(R) with respect to R at the
operating point is the same for all the subchannels used.

We note that in all the problems examined, the initial
efficiency is related to the correlation between V and X.
We define the mazimal correlation between V and X as the
supremum of Ef(X)g(V), where the supremum is over all
functions f and g such that Ef(X) = Eg(V) = 0 and
Ef*(X) = Eg*(V) = 1. Maximal correlation depends only
on the joint distribution of V and X and is independent of
the actual labeling. Conditions under which the maximal cor-
relation can be attained have been investigated by Renyi [3].
Our next theorem examines the relationship between the ini-
tial efficiency and maximal correlation.

Theorem 3 Initial efficiency is equal to the square of the
mazimal correlation between V and X.

Next we consider k separate senders. We are interested in
the increase in the doubling rate, A, for gambling on X when
sender ¢ observes V; correlated with X and the senders operate
at respective rates Ri,..., Ry. We prove an achievable region
for (Ry,..., Rk, A), and show that a Slepian-Wolf type of rate
region is achievable for this investment problem.
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Multi-way Alternating Minimization

Raymond W. Yeungland Toby Berger?

Abstract — In a K-way minimization problem, we
are interested in finding

min f(z1,...,2K),

e ESkg

min DO
€1 €Sy

where f is continuous and bounded from below, and
S; is a compact convex set inIR",1<i:< K. Ina
paper by Csiszar and Tusnady [2], a similar problem
with somewhat less stringent conditions was studied
for K = 2, where it was shown that an alternating
minimization algorithm converges to the infimum pro-
vided a certain geometric condition is satisfied. In
this paper, we take an approach (also with strong ge-
ometric flavor) different from theirs, which enables
us to obtain a sufficient condition for an alternating
minimization algorithm to converge to the minima.
In particular, we show that it is sufficient for f to
be convex. The Arimoto-Blahut algorithm for com-
puting channel capacity is discussed as an example of
application of our results.

I. AN ALTERNATING MINIMIZATION ALGORITHM

In a K-way minimization problem, we are interested in

min cen

TK
1 €51 ’ )‘

min f(z1,...
ex €ESx
where S; is a subset of R™, 1 < ¢ < K. Here z; is an ni-
tuple. We assume that S; is compact and convex, and f is
continuous and bounded from below. Let x = (24, ..., zx) be
a generic point in l'[JK:I S;. For each x, define for 1 <i < K

zi(x) = zi(z1,..., Ti-1, Tit1,..., ZK) € Si

such that z7(x) achieves
;Iéln f(z1,...,Tim1, ¥, Zit1, ..., TK)

when 21,...,%i—1,Tit1,..., 2k are fixed, and let

gi(x) = (z1,. ., Zie1, 2{ (X), Tit1, ..+, ZK)-
Let g(x) = gi»(x), where 1 < i* < K and

How- () = min,_ F(ai(x))

and define

Af(x) = f(x) — f(g(x))-
Since f(x) > f(gi(x)) for 1 <i< K, Af(x) > 0.

Let xo be any point in ].'IJ 15;, and xp = g(Xp—1) for k > 1.
This paper is devoted to study of this “greedy” alternating
minimization algorithm. We show that, under suitable condi-
tions, f(xx) — f* as k — oo. Henceforth, we will abbreviate

F(xx) to fr.
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of Hong Kong, N.T., Hong Kong; whyeung®ie.cuhk.hk

28chool of Electrical Engineering, Cornell University, Ithaca, NY
14853, USA; email:berger@ee.cornell.edu

11. SUFFICIENT CONDITIONS FOR CONVERGENCE
Since f is non-increasing and f is bounded from below, fx
must converge to some value. We now state a condition that
is sufficient for fi — f*.

(SC-1) Let x* (z},...,2%) € IIL.S;
achieves f*. For any x = (21,...,2x) € ;=1 5;
such that f(x) > f*, there exists y which is a con-
vex combination of z} and z; for some 1 <i < K
(y € S: since z},z; € S; and S; is convex) such
that

flz,- ..

It is not difficult to show that if (SC-1) is satisfied, then
Af(x) > 0 whenever f(x) > f*. Therefore, the algorithm
cannot be trapped at a local minimum. Using the assumption
that f is continuous and that Sj,1 < j < K is compact, it
can be shown that fi always converges to f*.

We have further proved that (SC-1) is satisfied if f is convex
in zi,...,zx. This condition is stronger than (SC-1), but it
has the advantage that it is easy to check. In the next section,
we will show how this condition can be used to prove the
convergence of the Arimoto-Blahut algorithm for computing
channel capacity.

,3i—1,y,zi+1,---,3K) < f(i'vl,---,zK)-

III. AN EXAMPLE OF APPLICATION
Let {Q(k|7)} be the set of transition probabilities of a channel.
Then the channel capacity is given by

max maxz Zp(])Q(k]j)log q(_7|k)

2(3) ’

(see Blahut [1]), which is equivalent to the negative of

mli,n m(iln Z Z p(.‘i)Q(H.‘i) log p(])

a(sk)’

Let

fpa) =Y Y si)Q(Hi)os 2k

The Arimoto-Blahut algorithm is a special case of the algo-
rithm described in Section 1 with K = 2; it is easy to check
that all the required conditions are satisfied. Using the results
in Section II, in order to show that the algorithm converges to
the channel capacity, we only have to show that f is convex
in both p and q. This can be done by invoking the log-sum
inequality on p. 29 of Cover and Thomas’ textbook [3]. So,
the algorithm does converge to the channel capacity.
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I. INTRODUCTION

We study the properties of a sequence of dependent random
variables generated with the following scheme. A sequence of
independent identically distributed random variables « arrives
at the input of a k-register; the random variables take values
0 and 1 with probabilities not equal to 1/2. The sequence
n of random variables generated by the k-register for & > 2
is a stationary random sequence with dependent components.
The sequence 7 is taken as the input to a memoryless binary
symmetrical channel with input-independent noise, i.e. 7 is
added coordinatewise modulo 2 to a sequence § of indepen-
dent identically distributed random variables that also take
the values 0 and 1 with probabilities not equal to 1/2 and are
independent with the sequence a.

In this paper we derive upper and lower estimates for the
entropy of the stationary non-Markov random source identi-
fied with the channel output. The upper estimate is based on
the well-known subadditivity property [1] of the entropy of a
finite-dimensional distribution. The main result is the proof
of nontrivial lower estimate of the entropy for two particular
k-registers: k = 2 and k = 3. If the probabilities of 0 and 1
in the sequences o and 3 are close to 1/2, this estimate shows
that the entropy of the source increases when k grows from 1
to 3. Pre-transformation of o by the k-register, k > 1, yields
the increase of the entropy of the additive source o + 3 over
the case k = 1. This property of increase of the entropy is sig-
nificant for constructing a strong random source from several
“weak” ones.

II. RESULTS
Let a and b, 0 < a,b < 1, be real numbers. By a;, 8; for
1t = 1,2,..., we denote independent random variables that
take the values 0 and 1 with probabilities
P{ozi = :B} = ————1 + aé—l) ,
1+b(-1)°
Plai=s) = UL

Take an integer k > 1 and consider a stationary discrete ran-

dom source pt®) = (n&k),nék), ...), where ngk), i > 1, take the

values 0 or 1 and are defined as
k—1
n® =g+ Z o4 mod 2 1)
=0
The symbol
Qi (2(n) = P{n™(n) = 2(n)}

denotes the finite-dimensional distribution of source (1). The
entropy of source (1) is defined as

Hi(a,b) = lim ~H(n® (n)),

n—oo T

OThis research is supported by RFBR Grant 93-01-00492, and
by ISF Grant MEF300.

where

H(n®™(m) = = 3 @ ((n) n Q" (a(w)

zm

is the entropy of finite-dimensional distribution.
We define a binary entropy as

h(§) = —6In6 — (1 - 6)In(1 — 6).

Theorem 1. For any k > 3

. 1— ba* 1 —b%a?
Hk(a,b)‘§m1n<h< 5 ),h( 5 ))

Theorem 2. For k = 2,

b%a*
Hy(a,b) >In2—1n (1 + '1——:b—2> .

Theorem 3. For k =3,

424 61207 _ 2;2
Hg(a,b)21n2—1n<1+ab+ab(1 “b)).

(1 —_ a2b2)2 — b4

Theorem 4. Assume that the probabilities of 0 and 1 in
sequences o and 8 are close to 1/2, i.e., the parameters a and
b are close to zero. Then for k = 1,2,3 the entropy Hy(a,b)
increases with the growth of k.
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Abstract — Various different definitions were inves-
tigated in Random Multiple Access theory for capac-
ity of the multiple-access collision channel. However,
as it was pointed out by Tsybakov [4], almost nothing
about the relations between the various definitions is
known. In this paper we try to fullfil this gap showing
about some widely used capacity definitions that they
are equivalent.

I. INTRODUCTION
The study of collision channels, also called random-access

channels, started with Abramson’s ALOHA system [1] which
uses only binary feedback (collision/no collision). Later on
this channel model (and its modifications) became a special in-
terest: it was investigated in numerous research articles. The
goal of all such papers is to present good conflict resolution
algorithms and to get bounds on the efficiency of the best pos-
sible ones. For this reason one have somehow to measure how
efficient an algorithm is. But different authors measured this
quite often in different ways, getting by this different defini-
tions for the throughput of an RMA algorithm which is nothing
else as one of these measures. This led to the study of differ-
ent capacity notions, since it is, raughly speaking, the best
possible throughput which might be achieved. On the other
hand it is not obvious at all, that an algorithm beeing efficient
(i.e. having a high throughput) in one sense, is also efficient
from another point of view as well. In [4] Tsybakov gave an
excellent survey about the Random Multiple-Access commu-
nication, where he wrote about this problem that “... we know
almost nothing about the relations between the various defi-
nitions of delay, throughput and capacity”. In this paper we
will show, that some of the most widely used definitions for
the throughput and capacity of the multiple access collision
channel are equivalent in the case when the feedback is the
multiplicity of the collisions.

II. SUMMARY OF RESULTS
Assume that £; < z; < z3 <...Is a random process where

z; is the generating time of the i** packet. We will suppose
that the instants of new-packet generations form a Poisson
process, 1. e. the differences (a:,-+1 - x;) are independent
random variables with the identical distribution

Pr{zij1 —zi >z} = e "

A conflict resolution protocol (or random multiple access
algorithm) is a retransmission algorithm f for the packets in a
collision. The delay 8§ of a packet is the time from its moment
of generation until the moment of its successful transmission.
Let &; denote the delay of the i** packet. The delay of a
random multiple access algorithm f is

Dy =lim sup E(6;),

=00

1This work was supported by OTKA Grant T016414

where E() denotes expectation, and its throughput is
R} = sup{): Dy < o0}.

In the case of blocked access the number of active users in
subsequent epochs forms a Markov chain M. This implies
the following definition for the throughput of a blocked access
algorithm:

R} =sup{A: M is stable}.

It is very natural to define the throughput as fraction of
the number of generated messages and the time is needed to
transmit them. More precisely, denote by X () the number of
generated messages in the time interval (0,¢) and by y(X(¢))
the number of steps which are needed to transmit these mes-
sages. Thus the throughput might be also defined [2] as

3 . EX(t)
A S0 40))
The above listed three different throughput notions imply
three different capacity definitions in the following way. Let
A denote the set of random multiple access algorithms. The
capacity of the random multiple access collision channel is de-
fined as

C=sup{Ry: feA},
which supremum can be taken over the different throughputs
defined before. Thus we get C*, C?, and C?, resp.

In 1981 Pippenger proved in probabilistic way [2], that
there exist an algorithm f, for which R} = 1. Ruszinké and
Vanroose [3] constructed such an algorithm. Let us denote
this algorithm by RV. We claim that the following statement
holds.

Theorem.
R'(RV)= R}(RV) = R*(RV) =1,

thus
c'=Cc*=C’=1
Consequently these throughput and capacity definitions are
equivalent.
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Matrix approach to the problem of matrix partitioning

S.I. Stasevich, V.N.Koshelev !

RAS, Council for Cybernetics,
Moscow, Russia

Abstract — We derive upper and lower bounds on
the number of all variants a rectangular M x N matrix
can be partitioned into fragments. Next the problem
of matrix partitioning is considered as a particular
example of a more general problem of constructing
two-dimensional Markov processes (fields) on discrete
rectangular latices. We discuss a matrix- theoretical
approach to the problem to explore the structure of
discrete fields defined by a given matrix of local in-
teraction.

In this paper we continue to study the problem formulated
in [1]. Let ¢(M;N) be a number of all variants an M x N
rectangular matrix (with empty cells) can be splitted into frag-
ments. Immediate calculations show that

B(2;2) = 12,¢(2;3) = 74, $(3;3) = 1442, $(4;4) > 1.7 x 10°

and so on. Each individual partition of the matrix is consid-
ered as an output of a block source with block size 2M N —
M — N and information rate

log, ¢(M; N)

ROMN) = S3N -0 — N

The rate is measured in "bits per edge”, because the denom-
inator of R(M;N) is the total number of all internal edges
between the cells of the matrix. So defined source is called
form source, where "form” means the set of contours result-
ing from an individual matrix partition [2,3,4]. The exponen-
tial behavior of ¢(M; N) may present an interest in image
processing (2], statistical mechanics {3] and other applications
exploiting different models based on the conception of ran-
dom fields. In [4] a special technique founded on the theory of
Fibonacci numbers was suggested and some upper and lower
bounds on ¢(M; N) were obtained.

Now we develop a formal matrix approach to the prob-
lem. This approach is based on Perron-Frobenius theory for
nonnegative matrices [5]. We introduce special (0,1)-matrices
describing a physical process of breaking down of an M x N
matrix into fragments. This four ”splitting matrices” are

10
Aoo=(01>,A01=A10=< ),

They define the splits allowed to run through a solid state
matrix with unbreakable cells. In these terms we prove
Theorem 1. For any integers M, N =1,2,...

01
11

$(M + 1N +1) = ||[| A~ 1],

where
N
Ay =[] Ansri® 5N € {0,137,
n=1
and ||.|| denotes the sum of all matrix elements.

1 This work was supported by RFFI Grant 93-012-467.

Then we prove the main result of the paper establishing an
exact exponential behavior of ¢(M; N). Let

R(o0;00) = MlliVIEcoR(M;N)

be asymptotical information rate of the form source.
Theorem 2.

R(o00; 00)

= 59%5 = 0.8322611,

where A = 3.1700865 is maximal eigenvalue of the matrix

1001
Ao Ao \ _ [ 0111
Ao A )1 0111
1111

The second part of the paper is devoted to a probabilistic
modification of the problem. We consider an 4 x 4 stochas-
tic ”splitting matrix” with the same zero elements as in 4 x 4
matrix shown in Theorem 2 and with arbitrary positive proba-
bilities substituted instead of ones. We show that the maximal
entropy rate of the so defined probabilistic form sou asymptot-
ically coincides with the information rate of the deterministic
form source shown in Theorem 2.

The 4 x 4 matrix shown in Theorem 2 reflects the demand
of continuity of a contour. We present a more general form of
lower and upper bounds on ¢(M; N) defined by an arbitrarily
given matrix of the local interaction [6] in the field and show
some results of computational experiments.

Finally some possible schemes of the form source coding
are discussed.
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I. Introduction

During the last decades, quite new experimental
approaches to the study of communication systems of
animals have been developed including those based on a
direct dialog with animals taught artificial intermediary
languages. The use of simple grammatical rules as well
as number - related skills at a level of pre - school
children have been demonstrated in chimpanzee [1] and
in grey parrot [2]. However, the question of existence
of a developed natural language in social animals is
still open for discussion. We have been suggested quite
a different approach to the study of communication
systems based on the ideas of the Information Theory.Our
recent experiments allowed to evidence the presence
of potentially unlimited number of messages in ant ”
language”, and to show ants as being able to use the
”text” regularities for information compression [3,4]. In
this report we consider plasticity of ant language as well
as their numerical competence.

II. Methods

Ants were kept in transparent nests in the laboratory
arenas. FEach worker was labelled with an individual
colour mark. As soon as discovering ants found food, they
informed the relatively constant teams of 5 - 8 foragers
about it. During experiments ants were fed in setups,
consisted of a long ” trunk ” with equally spaced 25- 40
branches, made of thin plastic sticks.Each branch ended
in an empty trough, except for one filled with syrup.To
start the experiment, an ant scout was placed at the
trough containing food. When it returned to the nest,the
duration of the contact between foragers and the scout was
measured. As soon as foragers began following the scout,
the scout was removed from the arena with tweezers. To
avoid odour tracks,the original maze was replaced by an
identical one.

III. Ant Numerical Competence and Plasticity
of Ant ”"Language”
It turned out that ants can count within several tens, and
that in their ” language” there are means of transmitting
messages about the number of objects. In all experiments
the teams abandoned the nest after they were contacted
and moved towards troughs 130 times. In 90 cases the
team immediately found the correct way. The probability
of finding the food-containing trough randomly is less
than 1071% The relation between the number i of the
branch and the duration ¢ of the contact between scout

and foragers is linear and described by the equation
t = ai + b.Note that in modern human languages with
decimal numeration the length of the written form of
a number ¢ and the time to pronounce the number :
are proportional to logi, but not to i¢. Archaic human
languages are known to have used another system of
numeration. The number ”one” was encoded as the word
”finger”, "two” as ”finger, finger” , etc. In this case , the
time required to pronounce 7 is also proportional to ¢, as in
ant ”language”. Such a large difference between modern
human and ant languages does not necessarily show that
the latter is primitive; as it is known that in a ”reasonable”
Jlanguage the length of a word should correspond to its
frequency of occurrence in communications. We then
consider to which extent may ant ”language” transform
to keep this equation valid. In special experiments a
horizontal trunk with 40 branches was used, however,the
trough was placed on different branches with different
frequencies: on two ”special” branches ( N 10 and N 20 ) it
appeared in about 2 cases of 3. At first the time required
to transmit information on the number ¢ of the branch
i was proportional to 7. But about halfway through the
series, the time of transmission of information about the
fact that the trough was on a ”special” branch became
much shorter than in the cases when the trough was on
other, seldom used branches. It should be emphasized
that the time ceased to be proportional to %, perhaps as a
result of a transformation in the communication system of
these ants, caused by a change in "numerical” frequency.
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Fixed-Slope Universal Algorithms for Lossy Source Coding Via
Lossless Codeword Length Functions*

En-hui Yang!, Zhen Zhang?, and Toby Berger?

I. INTRODUCTION AND ALGORITHMS

Let A be an abstract source alphabet and A a finite repro-
duction alphabet. If £ = (z;) is a finite or infinite sequence
of symbols from A or A (or of random variables taking their
values in these sets), let =}, = (zm, -, T») and, for sim-
plicity, write z7 as z”. We denote the set of all n-tuples
drawn from A(A) by A™(A"). A lossless codeword length
function(LCLF) 1 is a map from A*, the set of all finite se-
quences from A, to {1,2,- -, } satislying Zye/a" 27 <1 for
any n > 0. Clearly, there exists a one to one correspondence
between lossless codeword length functions and prefix codes:
for any LCLF I, there exists a prefix code ¢ : A* — {0,1}*
such that for any y € A*, I(y) = the length of #(y), and vice
versa. The well-known examples are the Lempel-Ziv codeword
length function LZ(y™) and the k-th order arithmetic code-
word length function Lax(y"). Let p: A x A — [0, +cc)
be a single-letter distortion measure. For any stationary,
ergodic source g, let R(D,u) and D(R,pu) denote its rate
distortion function and distortion rate function with respect
to the fidelity criterion {pn} generated by p, respectively,
where pu(z",y") = 27 37| p(zi,y:) for any 2™ € A™ and
y™ € A™. For simplicity, we shall assume that a reference let-
ter a* € A exists for p and p such that Ep(X1,a*) < oo and
that sup,¢ 4 inf, 4 p(2,9) = 0.

Corresponding to any LCLF I, three universal lossy data
compression schemes are presented in this paper: one is with
fixed rate, another is with fixed distortion, and a third is with
fixed slope. .

A fized rate universal lossy data compression scheme. Fix
R > 0. Let N(R,l) be the smallest positive integer such
that the set {y" € A™ : {(y") < nR} is nonempty for all
n > N(R,1). Let B.(l)(n > N(R,1)) consist of all y" € A"
such that {(y™) < nR. In our fixed rate universal lossy data
compression scheme, each source sequence " € A" is quan-
tized into a closest member y" of B,(l). There are two dif-
ferent ways for the encoder to encode z™: (1) The encoder
can transmit the index of ™ in B, (l) using a binary string of
length [nR]; or (2) the encoder can transmit the binary code-
word associated with y™ via the LCLF I, adding some dummy
digits to ensure overall codeword length [nR].

A fized distortion universal lossy data compression scheme.
Fix D > 0. For each = > 1, we think of the entire set A™ as a
codebook of dimension n and list the elements y” of A™ in or-
der of nondecreasing lossless codeword length {(y™). For each
z" € A", the encoder maps 2" into the binary codeword as-
sociated with y™ via the LCLF [, where y" is the first element
in A® such that (e, y") < D.

*This work was supported in part by NSF Grants NCR-9205265,
NCR-9216975, IRI-9005849, and IRI-9310670.

!Dept. of Math., Nankai University, Tianjin 300071, P.R. China.

2Commun. Science Institute, Dept. of EE-Systems, University
of Southern California, Los Angeles, CA 90089-2565, USA

3Dept. of Elec. Engr., Cornell University, Phillips Hall, Ithaca,
NY 14853, USA

A fized slope universal lossy data compression scheme. Let
A > 0 be fixed. Our fixed slope universal lossy data compres-
sion scheme works as follows: For each z™ € A™, the encoder
first searches the first element y™ in A™ which minimizes the
cost function n ' (y") 4+ Apn(2™,y") over the whole set A”,
where A™ is assumed to be ordered in some order, and then en-
codes z" into the binary codeword associated with y™. After
receiving the binary codeword, the decoder can completely
recover y" and output y™ as a reproduction of z®. In this
way, the resulting rate r,,(z",1,A) in bits per sample is then
n”ll(y"); and the resulting distortion p,(z™,1, A) per sample
is pn(z™, y™).

II. OPTIMALITY
The fixed rate or fixed distortion lossy data compression al-
gorithm mentioned above is just the extension of the corre-
sponding one in [1] to the case of any LCLF. Under some
mild conditions on I, similar results to [1] can be proved. In
the following, therefore, we focus only on the fixed slope lossy
data compression algorithm.

A LCLF lis said to satisfy Condition A if for any stationary,
ergodic process {Yi}{° taking values in A, n=11(Y™) converges
with probability one to the entropy rate of {¥;}{°.
Theorem 1 Let A > 0. Let pu be a stationary, ergodic source
with the random output X = {X;}{°. If I satisfies Condition
A, then as n — oo,

() (X" L) 4+ Apn(X™, LX) — Ra(n) + ADa(p) almost
surely, where Dx(p) = inf{D|D > 0, R;(D, ) > —A}
and Ra(p) = R(Da(u), ).

(i) ra (X LX) (pn(X™ LX) converges al-
most surely to Rx(u)(Dx(r)), provided (Da(u), Ra(1))
isl the only point on the rate distortion curve such that
R_(Da(n), 1) < =X < Ry (Da(n), ).

Particularly, Theorem 1 holds for the k-th order arithmetic
codeword length function L4 x(i. e. , 1= Lax)if k is allowed
to go to infinity. During the process of proving Theorem 1, we
also obtain a very strong sample converse theorem for variable
length source coding which implies Kieffer’s sample converse
theorem and strong converse theorem as corollaries.

The main advantage of this fixed slope universal lossy data
compression scheme over the fixed rate(fixed distortion) uni-
versal lossy data compression scheme lies in the fact that it
converts the encoding problem to a search problem through
a trellis and then permits one to use some sequential search
algorithms to implement it. Simulation results with the kth
order arithmetic codeword length function as a LCLF and the
M-algorithm as a sequential search algorithm show that this
fixed slope universal algorithm, combined with suitable search
algorithms, might be implementable in practice.
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Abstract — A practical suboptimal (variable source
coding) algorithm for lossy data compression is pre-
sented. This scheme is based on an approximate
string matching, and it extends lossless Wyner-Ziv
data compression scheme.

I. INTRODUCTION AND MAIN RESULTS

We consider a stationary and ergodic sequence {X}i2 - oo
taking values in a binary alphabet ¥ = {0,1}. We write X7,
to denote XmXma+1...Xn. As a measure of fidelity we con-
sider the Hamming distance (however, other fidelity criteria
can be easily accommodated into our main results) defined
as dn(z7,27) = (1/n) Yo, d1(z:i,T:) where di(z,z) = 0 for
¢ =7 and 1 otherwise (z,z € ). We assume that the max-
imum allowed distortion is D, and by R(D) we denote the
rate-distortion (cf. [1]).

We propose a practical suboptimal lossy data compression
scheme that extends the Lempel-Ziv scheme. Our scheme re-
duces to the following approximate pattern matching prob-
lem: Let the “training sequence” or “database sequence” z1
be given. Find the longest L, such that thereexists 1 < < n
in the database satisfying d(:cfg_l'*'l‘", xﬁif") < D. This nat-
urally extends Wyner and Ziv [5] (cf. also [4]) idea to lossy
situation (cf. also [3]) which is subject of this work.

Actually, the real engine behind this study (and its algo-
rithmic issues) is a probabilistic analysis of an approximate
pattern matching problem which we discuss next. Our prob-
abilistic results are confined to the stationary mizing model
in which two random events defined on two o-algebra sepa-
rated by g symbols behave like independent events as g — oo.
We denote by o(g) the mizing coefficient, and assume that
a(g) — 0 as g — oo.

It turns out that behavior of L, is related to two other
quantities, namely the shortest path s, and the height Hn
defined in the sequel. The height Hy is the length of the
longest substring in the database X' for which there exists
another substring in the database within distance D. More
precisely: the height is equal to the largest NV for which there
exist 1 < 4,7 < n such that d(Xf‘l+N,Xj—]+N) < D. Let
now Wx be the set of words of length k, and wx € Wy. Then,
the shortest path s, is the longest k such that for every wi €
Wi there exists 1 < i < n such that d(X;™'**, wi) < D.

The asymptotic behaviors of Ln, H, and s, depend on
generalized Rényi entropies 75(D) that we define below. We
write Bp(wx) for a ball of radius D of sequences from W,
that is, Bp(ws) = {e¥ : d(z},wx) < D}.

10n leave from Department of Discrete Mathematics, Adam
Mickiewicz University, Poznan, Poland.
28upported by NSF Grants NCR-9206315 and CCR-9201078.

Definition: For any —oco < b < o0

—log EP*(Bp(X71))
bk

where for b = 0 we understand ro(D) = limp—o mp(D), that is,

rp(D) = lim

k—oo

_ k
ro(D) = kllm Elog P}(%BD(XI )) ’

oo
provided the above limits exist.

Using the subadditive ergodic theorem, we can prove that
the entropies 7u(D) exist in a stationary mixing model. The
main result of the paper is summarized below.

Theorem. In a mizing model with the mizing coefficient tend-
ing to zero the following holds:

Ly 1

lim = ;0—(35

7L = OO

log n (pr)

But, L, does not converge almost surely to any limit and

actually the following is true

lim inf Ln_ ! lim sup Ln_ > 2
logn = r1(D)

n—oo logn n—00

T r_w(D)

(a-s.)

for the Markovian model. In the Bernoulli model, the last
inequality can be replaced by equality.

In a related paper Steinberg and Gutman [3] analyzed
the so called waiting time, defined as the number N such
that the beginning substring of length ! reoccurs approx-
imately in the string for the first time after N; symbols.
The authors of [3] proved that for a stationary ergodic se-
quence limsup,_  log Ni/l < R(D/2) (pr.). As a corol-
lary to our main result we show that in the mixing model
lim;_ oo log Ni /I = 1o(D) (a.s.), which ultimately settles the
problem of [3].
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The Gold-Washing Algorithm(II): Optimality for ¢-Mixing Sources*

Zhen Zhang'

Abstract — Two versions of the Gold-Washing data
compression algorithm, one with codebook innovation
interval and the other with finitely many codebook
innovations, are considered. The corresponding op-
timality results are proved for stationary, ¢-mixing
sources.

I. DESCRIPTION OF ALGORITHMS

In their recent paper [1], Zhang and Wei proposed a
universal lossy data compression algorithm called Gold-
Washing(GW) algorithm. Let A and A be our source alphabet
and reproduction alphabet, respectively. Fix R > 0 and let
L = |2™F]. For each n > 1, the GW algorithm acts like
an adaptive vector quantizer when it is applied to encode a
source sequence ¢ = {z;}{° from A. It first parses the source
sequence z = {z;}{° into non-overlapping source words of
length # 2™(t) = (L(e—1)nt1, Cemt)nt2, s Ten)y £ = 1,2, -,
and then uses a codebook C), (¢ — 1) which changes slowly in
time to quantize z"(t). Each codebook C,(¢—1) consists of an
ordered list of 2L entries. Each entry in the first half(denoted
by Ch(t—1)) of Cp(t — 1) is merely an n-length reproduction
sequence called a codeword from A, whereas each entry in the
second half of C,,(t — 1) consists of a codeword from A and
a counter associated with the codeword. When the codebook
Cy(t—1)is used to quantize the source word z™(t), the encoder
maps £"(t) to a smallest index for which the corresponding
codeword yields the smallest distortion among C,(t —1). Af-
ter z™(t) is encoded, the codebook C,(t — 1) is innovated and
changed to C,(t). The innovation operation of C,(t — 1) is
as follows. (Assume an index ¢ is assigned to z"(t) by the
encoder.) '

S1 If ¢« > L, the counter associated with the i-th codeword
in Cr(t —1) is incremented by 1.

If the counter associated with the (L + 1)-th codeword
in Cp(t—1)is > n¢ prior to the execution of S1, then a
randomly selected codeword from C1(2~1) is discarded
and, at the same time, the (L+1)-th codeword in Cy,(t—
1) is promoted into Cj(t — 1); otherwise, the (L + 1)-th
entry in C,(t— 1), including the codeword and counter,
is discarded and the first L entries in Cp(t — 1) remain
unchanged.

Each entry from the (L + 2)-th position to the 2L-th
position is moved one step forward.

S2

S4 Finally, a new randomly selected codeword according to
a prescribed distribution occupies the 2L-th vacant po-
sition and its counter is set to 0; the resulting codebook
is denoted by Cy(t) and used to quantize z"(t + 1).

In S2, n¢ is a threshold and ¢ is an number > 2. Initially,
the codebook C(0) is selected arbitrarily and all counters in
the second half of C,(0) are set to zero. Knowing the initial
codebook, the new random codeword in S4, and the discarded
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codeword in S2 when promotion occurs, the decoder performs
the codebook innovation operation in the exact same way as
the encoder does.

It was proved in [1] that the above mentioned GW algo-
rithm is optimal for memoryless sources. In this paper, our
aim is to investigate the asymptotic optimality of the GW
algorithm for stationary, ¢-mixing sources. Accordingly, we
shall consider the following two versions of the GW algorithm.

GW algorithm with codebook innovation interval k: This
version of the GW algorithm is similar to the original one
mentioned above except that this time the encoder inno-
vates its codebook only when ¢t = (k + 1)m, m = 1,2, ...
In other words, the time interval between two consecutive
codebook innovations is k; during the time period from t =
(k+1)(m—1)+1 to t = (k4 1)m, the codebook is held fixed
and used to quantize source words z"((k+1)(m—1)+1), ...,
£"((k 4 1)m); only after the source word z™((k + 1)m) is en-
coded, the codebook is innovated according to the codebook
innovation operation (S1-S4) and then is held fixed(including
the counters in the second part of the codebook) and reused
for the next time period of length k.

GW algorithm with finitely many codebook innovations:
This version is a variant of the GW algorithm with codebook
innovation interval & where after finitely many codebook in-
novations, the codebook is held fixed and reused to quantize
the incoming successive source words.

. 1. OPTIMALITY RESULTS
Let p: A x A — [0,400) be a single-letter distortion mea-

sure. Given a stationary, ergodic source s with random out-
put {X:}7°, let D(R) denote its distortion rate function with
respect to the fidelity criterion {p.}, where pn(z™, y"*) =
! E?:l p(zi, i) for £™ € A™ and y" € A" Ifa stationary,
ergodic source g with random output X = {X;}{° is encoded
by the GW algorithm with codebook innovation interval k(n),
the expected distortion per symbol is defined by

T
:lp > Epa(X"(1),Calt-1)), (1)

t=1

where pr(X"(t),Cn(t — 1)) is the minimum of pn(X™(t),y™)
over all y™ € Cn(t—1) and “E” denotes the expectation with
respect to X™(t) and Cr(t—1). The following is our optimality
result concerning the GW algorithm with codebook innovation
interval k(n).

Theorem 1 Let p be a stationary, ¢-mizing source having
the blowing-up property and whose ¢-mixing coefficients satisfy
d(k(n)n)L™" — 0 as n — oo, then

p(n,p) — D(R) asn — oo.

p(n, p) = lim sup

T—00

When p is a strong mixing Markov(or finite-state) source,
Theorem 1 can be strengthened to almost sure convergence.
Similar results hold for the GW algorithm with finitely many
codebook innovations.
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for Data Compression of Discrete Memoryless Sources
with Fidelity Criterion

Hiroki Koga and Suguru Arimoto

Department of Mathematical Engineering and Information Physics,
Faculty of Engineering, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract — Output probability distributions of the
test channels play important roles in data compression
of discrete memoryless sources with fidelity criterion.
In this paper a universal algorithm for estimating the
output probability distributions is proposed. Sample
size required by the algorithm is evaluated under a
criterion of estimation similar to that of PAC learning
in the computational learning theory.

I. INTRODUCTION

Rate-distortion function describes a basic lower bound of com-
pression efficiency asymptotically attainable by a data com-
pression scheme with fidelity criterion. Fora discrete memory-
less source of finite alphabet A = {a1,az2,... ,ay} it is defined
as a minimum of the mutual information as follows:

R(p,D) = I(p; W), (1)

min
wew(p,D)
where p = (p(a1),p(az),...,p(as)) denotes a probability dis-
tribution of the source, W(p, D) is the set of J x J stochas-
tic matrices each element of which causes average distortion
per symbol within D under a single-letter fidelity criterion
d: Ax A — [0,0) satisfying d(a;,ax) = 0ifand only if j = k.
The rate-distortion function is positive for all D € [0, Dmaz),
where Dimar = ming ij(aj)d(aj,ak). Fix A € (0, Dmaz)
arbitrarily and denote by W* the test channel matrix achiev-
ing the minimum in (1). The probability distribution on A
defined by p*(ar) = Zj=1p(aj)W'(ak|aj),k = 1,2,...,J
means the output probability distribution of the test chan-
nel corresponding to the distortion level A. In this note a
universal estimation algorithm of p* is proposed and sample
size required by the algorithm is evaluated.

Suppose that another discrete memoryless source with the
same alphabet A as well as the source to be compressed
is available to the estimation algorithm. Denote by q =
(¢(a1),q(az),...,q9(as)) the probability distribution of an-
other source called auziliary source. Assume that g(a;) > 0
for all a; € A satisfying p*(a;) > 0. For an arbitrarily fixed n
let X = {x1,%X2,...,xr} be L n-tuples drawn independently
from the source and Y = {¥1,¥2,--- ¥} be M n-tuples
drawn from the auxiliary source. By using the two sets A" and
Y, the algorithm outputs p* as an estimate of p* satisfying

Prob(D(p*l[p*) >¢€) <6 (2)

for any given ¢ > 0 and § € (0,1) if n is sufficiently large,
where Prob means the probability with respect to &' xY. The
criterion of estimation (2) is deeply related to a data compres-
sion scheme with fixed data-base proposed by Steinberg and
Gutman [1] and analyzed in detail by Koga and Arimoto [2).

Moreover, imposing the criterion (2) is the first attempt to
introduce a viewpoint of the PAC (Probably Approximately
Correct) learning models proposed by Valiant [3] to data com-
pression with fidelity criterion.

. II. MAIN RESULTS .
It is assumed that the estimation algorithm can use an esti-

mate of p, denoted by p,, satisfying |[p — Pell1 = O(n~"<) for
any fixed Be € (0,3]. It estimates p* in the following manner:
Algorithm 1 1) Choose o > 0 and 3 € (0, B.) arbitrar-
ily. Derive X = {X1,X2,...,Xx1} from the source and
Y ={¥1,¥a---,Yu} from the augziliary source. Fiz an
integer mo arbitrarily satisfying 1 <mo < M.
2) Forallm=1,2,..., M define N (Y D) by
N(ym¥ A) = {X € X l d"(xi Y) S A
and |lp, —tx)h <= 7%}, (3)
where d, denotes distortion between n-tuples defined by
d, and t(x) denotes the type of x. Search for the integer
m* magimizing [IN(¥,., 8)|.
3) If IN(Y e, D)} > 0%, output t(¥,ne ). Otherwise, output
t(Ymg)- O
Under the assumption that p* is unique, lower bounds of L
and M guaranteeing Algorithm 1 to meet the criterion (2) are
established in the following theorem.

Theorem 1 Let Rx = tlog, L and Ry = Llog, M. Then
for any fited A € (0, Dmaz), if the two inequalities

min min I(q';V) < Rx < R(p, D), (4
q’:D(P*ilq’)<e veV(P.q',4) (q ) X (p ) ( )
Ry > D(q.lla) 5)

are satisfied then there ezists an integer no satisfying that
Algorithm 1 outputs p* meeting the criterion (2) for all
n > no, where I(q';V) denotes the mutual information,
V(p,q',A) denotes the set of J x J stochastic matrices satis-
fying Z;::) ¢'(ax)V(a;lar) = p(ay) for all j=1,2,...,J and
Z;ﬂ ZZ=1 ¢'(ax)V(ajlax)d(aj,ax) < A, and q, is a proba-
bility distribution on A that achieves the minimum in (4) with
a stochastic matriz V € V(p,q,,A). O
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A Universal Data-Base for Data Compression

Jun Muramatsu! and Fumio Kanaya?
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Abstract — A data-base for data compression is uni-
versal if in its construction no prior knowledge of the
source distribution is assumed and is optimal if, when
we encode the reference index of the data-base, its en-
coding rate achieves the optimal encoding rate for any
given source: in the noiseless case the entropy rate
and in the semifaithful case the rate-distortion func-
tion of the source. We construct a universal data-base
for all stationary ergodic sources, and prove the opti-
mality of the thus constructed data-base for a block-
shift type reference and a single-shift type referrence.

I. Introduction

We consider the case where both a sender and a receiver have
the same data-base on their respective sides. In this case, we
can transmit a source output in the following way: the sender
refers to the data-base for the data string which matches the
given source output and then encodes the reference index of
the data string to send it out. The receiver then decodes the
encoded index to retrieve the data string from the data-base
and then uses it to represent the source output. There are two
typical conceivable methods of referring to the data-base: one
is a block-shift type reference and the other is a single-shift
type reference. Either method can achieve data compression
if the number of bits needed to encode the reference index rel-
ative to the data-base is smaller than that needed to represent
the source output itself. Hereafter we refer to the number of
bits divided by the sequence length of the source output as
the encoding rate.

We construct an optimal universal data-base for ergodic
sources. The construction of our data-base sequence relies
entirely on the basic concept of the complexity function (cf.
[1]): it is constructed by ordering data strings according to the
increasing complexity. The obtained data-base sequence can
be applied for both the block-shift type and the single-shift
type reference cases.

It should be noted that this data-base can be proved opti-
mal also for the fixed-rate universal code with distortion (cf.

3]

_ II. Block-Shift Type Reference Case
Let A be a finite set and let L be a complexity function in the

almost sure sense which is defined in [1].

Definition 1 Let elements of set A™ be ordered according to
the increasing complexity (ties may be broken in an arbitrary
order). The mapping which maps an element of A™ into its or-
der is called an index function induced by L and is denoted by
Lrn. A data-base sequence corresponding to the index func-
tion L1 is defined by

" = L7 (1) * LT (@) + -+ LT (AT,
where notation * is used to denote concatenation of strings.

Next, let A be a standard space and let p is a distortion
function which satisfies some conditions stated in [1].

Definition 2 A D-semifaithful indez function Lr,pn is de-
fined by

Lrpn(x™) = min  Lra(2")
EMEAR (z)
= min{l; a%_1y41 € AB(™)}, 2" € AT,
where @) = (@,...,1;) and

i on an i 1 = -
Ap(z™) = {a: €A™ ;Zp(mi,mi)@}.
=1

Theorem 1 For any A-valued stationary ergodic source X y
1 .
lim = log, LLn(8") =Hg px-a.s.,
n—oo

and for any A-valued stationary ergodic source X and D >
Dy,

.1
lim - log, £1,p,n(2") = Rx(D), px-a.s.,

n— oo
where Hy and Rx(D) is the entropy-rate of the source X and
the rate-distortion fucntion of the source X, respectively.

II1. Single-Shift Type Reference Case

We now consider the case when a data-base sequence is ref-

fered to by the single-shift type reference.

Definition 3 We define a function Sr,» be ginen by

Spa(3") = min{s; 2" =ast""'}, 2" e A"

and refer to it as the index function for the single-shift type

reference. And we define a finction Sp,p,n be given by
Sr,pa(z") = min _ Spa(2")

e AT (z7)

agt" Tt e Ap(a™)}), ted”

and refer to it as the D-semifaithful index function for the
single-shift type reference.

= min{s;

Theorem 2 For any A-valued stationary ergodic source X,

lim

- CO

1 an
ElongL,n(x Y=Hy; px-a.s.,

and for any A-valued stationary ergodic source X and D >
Do,

lim
n—oo

1
- log, S1,p,n(z") = Rx(D), px-a.s.
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UNIVERSAL COMPRESSION ALGORITHMS
BASED ON APPROXIMATE STRING MATCHING

Ilan Sadeh
Math. Dept., Ben Gurion University, Beer Sheva, Israel, sade@indigo.bgu.ac.il

Two practical universal source coding schemes based on
approximate string matching are proposed. One is an
approximate fixed-length string matching data compres-
sion, and the other is an LZ-type quasi parsing method
by approximate string matching. It is shown that in the
former algorithm the compression rate converges to the
theoretical bound of R(D) for ergodic and stationary
processes as the average string length tends to infinity.
A similar result holds for the latter algorithm in the
limit of the infinite database produced by the former al-
gorithm. The main advantages of the proposed methods
are the asymptotic behavior of the encoder implementa-
tion and the simplicity of the decoder. Practical results
of image and voice compression will be presented.

Definition 1. We look at the positive time at the se-
quence ug,uy.... Let L be the first index such that
the string ug ... ur_1 Is not a substring of the data-base
uZy. That L is equal to Ly(u).

Definition 2. The random variable Ni() for I > 0 is

the smallest integer N > I such that uf™! = uI__J\l,—N

Given alphabets U and V, a distortion measure is any
function d : |U x V| — R*. Let p(4;9) denote
the distortion for a block- the average of the per let-
ter distortions for the letters that comprise the block,
(@ 8) = § Yhomy d(ia; B).

Definition 3. For each sample sequence 4 of length [,
taken from the sequence u, we define a set D — Ball,

D — Ball(i) = {T)|p(ﬁ,ﬁ) < D}.

Definition 4. For each sample sequence @ we define the

random variable DL, (@,vp) = (11_1::}3(<D L (,vZ3).
U:p(1,0)<

Definition 5. For each sample sequence u we define the

random variable DN;(@,v ;) = (rpi_r)1<D Ni(9,vZ})-
7:p(1,7)<

Data Compression Scheme A.

1. Verify the readiness of the decoder.

2. Take a string @ = u}; ' of length [.

3 If ué’l can be approximately matched up to tol-
erance D by a substring of v:,ll, encode it by specify-
ing DN;(i,vZ)) to the decoder. Add a bit as a header
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flag to indicate that there is a match. Append string
vI__I;;,lDN’ to database in decoder and encoder at posi-
tion 0.

4. If not, indicate that there is no match and trans-
mit to the decoder and append to the database in the
encoder and decoder, the string vg‘l, which is the best
D-Ball center, obtained by blockcoding on the current
ug_l string and is based on the accumulated empirical
distribution in the past of u. Blockcoding algorithms
are known in literature. The codeword is transmitted
as Is, without compression.

5. Shift the indices by | to the appropriate values. Up-
date n to n+ . Repeat the process from step 1, with a
new string of length | and a database vo).

Limit Theorem A. Given is a D-semifaithful
database v:})o generated by Scheme A from a station-
ary ergodic process u. We assume that the system
preserves ergodicity and stationarity. For all § > 0,

log DN (i, vZ 4
Jim Pr { —05—’5“—M - R(D)‘ > B} = 0. The av-
erage compression ratio attains the bound R(D).
Scheme B.
1. I=1.

2. Take the string of length [ uf™*.

3. If ué’l can be approximately matched up to toler-
ance D by a substring of v:}l, store a pointer N to that
substring and increment . Go to step 2.

4. If not, append to the data base track the string
UI_—]?,_N at position zero and further, and append the
letter v;_; - the reproducing letter which satisfies
d(ui—1,vi—1) = 0. The encoding is done by the pointer
to the string v' 2"~ the length DL,(u) and the last
reproducing letter associated to the last source letter.
5. Repeat the process from step 1, where the database
is appended with the chosen string denoted by vODL".
Limit Theorem B. Given is a suffix v, taken from
an infinite database generated by an encoder - decoder
pair as described in Scheme A. At time zero switch to
Scheme B. As the memory size - n tends to Iinfinity,
for the new sample sequence u encoded from the sta-
tionary ergodic input u by Scheme B, in probability,

[ logn }:R(D).

\ DL, (,v"1)

lita,
n—00
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Abstract — Upper bounds for certain exponential
sums over Galois rings are presented. The bound
may be regarded as the Galois ring analogue of the
so called Kloosterman sums and related exponential
sums with a Laurent polynomial argument. An appli-
cation of the bounds to the design of large families of
polyphase sequences with good correlation properties
is also given.

I. INTRODUCTION

Let ¢ : GR(q, m) — C* be an additive character of the char-
acteristic ¢ = p°, (p prime) Galois ring of ¢ elements. Let 7
denote the subset of GR(g, m) consisting of the zero element
and the powers of an element « of multiplicative order p™ — 1.

In [1] Kumar, Helleseth and Calderbank studied the expo-
nential sums of the type

> H(F (@),

ze€7T

where f(z) is a polynomial with coefficients in the ring
GR(gq,m). They apply the theory of the function fields of
algebraic curves and their characters. The same technique
will allow us to study such sums, where in place of the poly-
nomial f(z) we have a Laurent polynomial, i.e. we allow neg-
ative powers of z as well. Observe that this makes sense in
T* = T\ {0} as all the elements in 7" are units of the ring.
Our technique differs from the approach in [1] in the sense
that we have utilized a Witt vector presentation of the Galois
rings: For example we view the ring GR(4,m) as the ring of
Witt vectors W2 (F) of length two over the field F = GF(2, m).
The elements of W5 (F) are ordered pairs (e, a1), a; € F and
the ring operations of two such pairs are defined as

-+

*

(Bo, B1)
(ﬂonﬂl)

(2o + Po, a1 + B1 + aofbo),
(@ofo, @183 + Pra}),

il

(CYo, 01)
(a0, 01)

where the arithmetical operations between the individual com-
ponents are the usual field operations. Our set 7 consists then
of the pairs (8,0), € F. Similarly the rings GR(8, m) can
be viewed as rings of Witt vectors of length three. For a de-
scription of the arithmetic of Witt vectors of arbitrary length
and characteristic we refer the interested reader to Jacobson
[3, section 8.10].

II. RESULTS

We have proven the following results:
Theorem 1 Let ¢ =4 and o, € GR(4, m) be arbitrary ex-
cluding the case « = # = 0. Then

§:¢Gn+ )<4%F

2E€T*

Theorem 2 Let ¢ = 8 and oy, f1 € GR(8,m) and a3,03 €
4GR(8, m) be such that at least one of them differs from zero.
Then

Z¢(a1z+ﬂ—+aax + = ) < 8v2m,

xz€T*

As is the case with the usual Kloosterman sums, we have
the additional result that the associated hybrid sums

Y ¥ (f@)x(@)

xET*

have exactly the same bounds. Here f(z) is any of the Laurent
polynomial appearing in the above results and (a’) = wh
is a multiplicative character of the group 7*,w = ?™/(P™ ~1),
Such hybrid sums can be used either to analyze the aperiodic
correlation properties of the resulting family of sequences or
to get an even larger family with a very large alphabet. After
submitting this note I have learned that Helleseth, Kumar and
Shanbhag have obtained more general versions of the above
theorems [2]. However, they didn’t consider the associated
hybrid sums.

III. APPLICATIONS TO SEQUENCE DESIGN

The above character sums appear naturally as correla-
tion values of certain families of sequences. To arrive at
the families all one has to do is to select representatives of
cyclically distinct classes of associated codewords of period
L = |T*| = 2™ — 1. Our character sums yield families with
the following parameters for all m > 1:

¢ Quaternary family of size L and maximal correlation

1+4vVI +1,

¢ Eight-phase family of size L7 and maximal correlation
1+8V/L+1,

¢ Polyphase family of size L* and maximal correlation
144v/L +1 and

¢ Polyphase famlly of size L®* and maximal correlatlon
1+8/L+1

Here the ‘polyphase’ families have alphabets of sizes 4L

and 8L respectively effectively filling in the unit circle of the
complex plane.
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Generalization of No Sequences
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Abstract-In this paper, GMW sequences and fami-
lies of No sequences are generalized. Generalized GMW
sequences have ideal autocorrelation properties and bal-
ance properties and generalized No sequences also have
optimal correlation properties in terms of Welch’s lower
bound. The linear spans of the generalized GMW se-
quences and generalized No sequences appear to be large
although we do not at present have a closed-form -ex-
pression for the linear span. A count of the numbers of
cyclically distinct generalized GMW sequences and gener-
alized No sequences that can be constructed is provided.

I. INTRODUCTION

In this paper, the generalization of GMW sequences
and No sequences is introduced. In Section II, GMW se-
quences are generalized, those ideal full-period autocorre-
lation properties are derived, and a count of the number of
cyclically distinct generalized GMW sequences that can
be constructed is provided. It is also shown how the fam-
ilies of No sequences can be generalized in an identical
fashion and optimal correlation properties are described
in Section I1I. Here, the number of distinct families of gen-
eralized No sequences of given period is described, too.

II. GENERALIZATION OF GMW
SEQUENCES

We can define generalized GMW sequences as follows:
Definition 1 : Let n and m;, i = 1,2, ...,d, be inte-
gers satisfying

mgln and m;|mygq, for 1<i<d—1. (1)

A generalized GMW sequence is then defined as the mul-
tiple trace function sequence of period N given by

sg(t) = tri {{trmi{ltrm (- - {ltrim, ()]} - ~}]’2}]"}2,

where « is an element of order N = 2" — 1 and for 1 <
i1<d,

ged(r;, 2™ - 1) =1, 1<r < 2™ ~ 1. (3)

The generalized GMW sequence has the ideal full-
period autocorrelation values and it can be counted as
follows:

Theorem 1 : The number of cyclically different gen-
eralized GMW sequences of given period N is given by:

Ngamw =

iCHaB VN s FTCUE S

where ¢(-) is Euler’s phi function.

IIl. GENERALIZATION OF NO SEQUENCES

The definition of a generalized No sequence family is
given as follows:

Definition 2 : Let n and m;, ¢t = 1,2, ...,d, be inte-
gers satisfying

n=2-mgand mjlmiyq, for1<i<d-1. (5)
A family of generalized No sequences
Sy ={s(®)]0<t<N-1, 1<i<2™}  (6)

is a set of multiple trace function sequences defined as
si(t) =t {{trm{trma{- - {trn,, (@) 4307} - J2 ),
(7

where N = 2" — 1, 4; is in GF(2™¢), T = 2™ 4 1, and
for 1 <:<d,

ged(ri, 2™ = 1)=1, 1<r; < 2™ —1. (8)

The full-period correlation function of No sequences
are the same as that of Kasami sequences. Counts for the
number of cyclically distinct generalized GMW sequences
and generalized No sequence families are the same.
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Codes for Optical Transmission at Different Rates
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Abstract — Constructions for families of cyclic con-
stant weight codes are presented to be used in fiber
optic CDMA networks for multirate transmission. It
is shown that the discussed code families satisfy the
requirements for successful transmission of different
data rates using the CDMA technique.

I. INTRODUCTION
An (n,w, X)-optical orthogonal code (00C) (see 1], [2],[3]) C,
n>1,1<w<n, 1< A< w, isafamily of {0, 1}-sequences
of length n and Hamming weight w satisfying the following
auto and cross-correlation conditions:

n-1

> a(k)z(k @ T) < X (1)

k=0
for all sequences z(.) € C and all integers 7 # 0 (modn) and

n—1

> ak)y(k@n1) < )

k=0

for all pairs of sequences z(.), y(.) € C and all integers T,
where @,, denotes addition modulo n.

For a given set of values of n, w and ), let &(n,w, ), denote
the largest possible cardinality of an (n,w, A)-optical orthogo-
nal code. Upper bounds for this function and several optimal
constructions for A = 1 and 2 can be found in [1}-[3]. An easy
upper bound derived from the Johnson bound (see [1]) states
that

A(n, 2w — 2\, w) (n—1)(n—=2)..(n- 1)

F(n,w,2) < | — J< w(w—1). (w—N)

II. CONSTRUCTIONS

Codes with these properties have been called optical or-
thogonal codes in papers [1]-[4] in connection with applica-
tions for optical channels and cyclically permutable constant
weight codes (see [5] and references there) in connection of
constructing of protocol sequences for the multiuser collision
channel without feedback.

In a multimedia environment different types of users trans-
mit at different data rates [6]. As a most obvious example
in Personal Communication Networks we have low rate-voice
transmissions and high rate data-transmissions.

Note that in a multirate case a CPCW with a longer length
corresponds to lower data bit rates and the smaller length
CPCW corresponds to higher data bit rates. Hence for mul-
timedia applications we need CPCW families with different
lengths and weights. The code construction is complicated by
the fact that now we need to establish not only correlation

! This research is supported in part by the National Science Foun-
dation under Grant numbers RII-9014056, NCR-890505, and the
Computational Mathematics Group of the EPSCoR of Puerto Rico
Grant.

properties (value of A) of one CPCW family but also cross-
correlation properties of families of CPCW with different n
and w.

In (3], three constructions (A, B and C ) for families of
OOC'’s are presented. In every case, the families are asymp-
totically optimum in the sense that, as the length of the se-
quence family — oo, the ratio of the size of the OOC to that
of the maximum permissible as determined by the bound in
(3) above, approaches unity.

All three constructions make use of the following two ideas.
Let n be an integer that can be expressed as the product n =
niny of two relatively prime integers n; and n,. Then, from
an application of the Chinese remainder theorem, it follows
that the construction of sets of {0, 1} sequences with periodic
correlation bounded above by ) is completely equivalent to
the task of constructing a collection of arrays whose doubly-
periodic correlation is bounded above by A. Secondly, the
codewords within each family are required to have constant
weight. The sequences in each of the three families 4, B and
C when represented in matrix form appear as the graph of a
function mapping Z,, — Zn,. This guarantees that they all
have constant weight (approximately) nz. The functions in A
and B are polynomials, whereas, construction € uses rational
functions.

In this talk, we will show that Construction A can be
used to construct a nested chain of asymptotically optimum
OOC’s of lengths no = n, ni|no, ¢ > 1. Using on-off keying
as the method of data modulation, we show how this nested
chain can be used to efficiently allow several users with differ-
ent information rates to simultaneously transmit information.
Decoding of the desired information stream is easily accom-
plished using correlation detection.

Such codes are relevant to multimedia communications.
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An Upper Bound for Extended Kloosterman Sums over Galois Rings
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Abstract — An upper bound for the extended
Kloosterman sum over Galois rings is derived. This
bound is then used to construct new, efficient se-
quence families with prime-power phase.

I. INTRODUCTION

For a fixed prime p and integers e,m, e > 2, m > 1, let
Re,m denote the Galois Ring of characteristic p° and contain-
ing p°™ elements. Let t)e,m be a non-trivial additive character
of Rem and let f(x) be a non-degenerate polynomial (i.e. no
term in f(z) has degree which is a multiple of p) over Rem
with weighted degree [1] Dj. Define Te,m = Torm U 0 where
Tem s a cyclic subgroup (the Teichmuller group) of order
p™ —1of R; .. In [1], Kumar et al. prove

D bem(f(@)| < (D= DVP )

zGTe,m

This bound leads to new sequence families which compare
very well with existing sequence families when maximum non-
trivial correlation, alphabet size and family size are used as a
basis for comparison. More precisely, let Fp denotes a maxi-
mal family of pairwise, cyclically distinct sequences each hav-
ing period p™ — 1 from the set

Sp = {{Tem(f(8")}hiez | D; < D}

where 3 is a generator of 7", and f(z) € Re m[x] has weighted
degree D. We then have the following bounds for the max-
imum non-trivial correlation Crma: and the size of the family
Fp as under

Cma:r S 1+ (D - 1)\/1)—"{

and
|Fp >p'n(D—Lf,%J—1).

In this paper we obtain an upper bound for the extended
Kloosterman sums, i.e. sums of the form

Kem(fif2) = 3 bem(fi(@) + f2(71),

Ie/re‘,m

where fi(z), f2(z) are polynomials over Rem. These sums
lead to new sequence designs for CDMA applications.

II. BOUND ON THE EXTENDED KLOOSTERMAN SUM

Let fi(z), f2(z) € Re,m[z] have weighted degrees Dy, and
Dy, respectively. Let ¢e m be any non-trivial additive char-
acter of Rem. Using L-function techniques, we can express
the exponential sum ZzeT;m Yem(fi(z)+ f2(z7")) as a sum

0The work was supported in p'art by the National Science Foun-
dation under Grant Number NCR-93-05017 and in part by the Nor-
wegian Research Council for Science and the Humanities. 88
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of Dy, + Dy, complex numbers. These complex numbers can
be shown to be the reciprocal roots of the zeta function of a
function field over Fpm. It follows from the Riemann Hypoth-
esis for function fields, that the magnitude of each of these
complex numbers is 4/p™. Thus, using notation as above, we

obtain the following theorem:
Theorem 1

> em(fi@) + f2(a7))| < (Dsy + Dy )VP™

€T m

III. APPLICATIONS TO SEQUENCE DESIGNS

We now restrict ourselves to the case when p = 2. Consider
the set Sp,,p, of sequences defined via

8p,,0; = {{Te,m(fl(ﬁt) + f2(13_t))} I Ds £ Dy, Dy, < D2}

where 8 is a generator of 7., and fi(z) € Re,m[z], 1 =1,21is
non-degenerate with weighted degree Dy,. Let the set

Fpy,0, C Sp4,D,

consist of a maximal family of pairwise, cyclically distinct se-
quences in Sp,,p, with each sequence having period 2™ — 1.
Using Theorem 1, it is easy to see that the maximum non-
trivial correlation Crmaz of the family Fp, p, is upper bounded
via

Cmar S 1 + (Dl + DZ)Vzm- (2)

The size of the family Fp,,p, can be lower bounded using the
formula below:

(P, p,| > 2m(Pr4Da=LFH =152 1-1)

3)

Note that

L

In case of equality, we note that the corresponding bounds
for the maximum non-trivial correlation and family size of

Di+D2+1

it | B2

Fp,+D,+1 and Fp, p, are equal.
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Abstract — For the application in a cellular common-
code spread-spectrum multiple access system, here
referred to as CTDMA, the ambiguity function of
the binary spreading sequence and its mismatched de-
spreading filter is optimized.

I. INTRODUCTION

In cellular Code Time Division Multiple Access (CTDMA )
systems [1], the user signals are first separated by a symbol-
level TDMA scheme and then spread in a DS-CDMA fashion
by a common (cell-specific) binary spreading sequence s[] of
length L with s[n] € {~1,+1} for 0<n < L and zero other-
wise. At the receiver, the incoming signal is passed through
the aperiodic inverse filter v[] of s[-], which completely sep-
arates the users of the same cell and thus omits this kind
of interference that usually appears in cellular CDMA. The
filter v[-], two-sided infinite in length, is well approaimated
by a filter w[] of length N = 3L, which still achieves a suf-
ficient user separation by minimizing the aperiodic correla-
tion sidelobes Ciw[m] = 3 s[n]wln + m], m # 0. Differ-
ent techniques to design wln| have been discussed in the lit-
erature: Truncation of v[-] is conceptually simple [2], linear
programming (LP) optimizes the peak/off-peak (POP) ratio
psw =Csw[0]/ max,0 |Csw[m]|, and the least-square (LS) al-
gorithm minimizes the sidelobe energy of Cswl]-

II. SYSTEM ANALYSIS
These filter design techniques neglect possible Doppler fre-
quency shifts that occur in cellular applications due to veloc-
ity differences Av. The corresponding effect at the receiver
output is described by the ambiguity function

Asw[m, &) = Ze_ﬂ"&” s[n] wn +m)

n
with § =Tcfq. Here, T, is the chip duration, f; = 2Avfo/c
the Doppler shift, fo the carrier frequency and ¢ = 3-108%
the speed of light. With fo= 2 GHz, T, ~ 1ps and Avmaz =
30...300 1:—, maximum values of &nar5-107%...5.10™2 are
obtained. In order to investigate the degradation due to these
Doppler shifts (for other results, especially for larger Doppler
shifts, cf. [3, 4]), we have computed the generalized POP-ratio

min!ﬂsfmaz Asw[o, é]
MAX£0, €| <Epmas |Asw[m, E]|

where the filters w[-] of length N =3L have been determined
using the LP technique. For &0 =107%, the Doppler effect
causes a noticeable degradation of psu(€maz), and for &ayp =
5~10_3, the loss in psw(ﬁmax) can exceed 20dB as shown in
the table below that lists the Psw(Emaz )-values. Especially se-
quences with best noise performance [5] (cf. #1,#2,#3), which
also provide very good ps.(0)-values, seem to be Doppler sen-
sitive. Others (cf. #4) are less sensitive.

Psw(fmam) =

pedestrian car train airplane

Avmaz=0| ~302 ~60Z | 3002
#| L s[] (hex) v(] Emax =0 =5'10_4 =1'10_3 =510"3
1120 05D39 | w|-] || 40.070 dB | 37.97 dB | 34.64 dB | 22.00 dB
2125 073F536 | w{ ] || 40.828 dB | 37.90 dB | 33.97 dB | 20.86 dB
3 |30 | 09BF8EBS5 | w-] || 42.408 dB | 38.35 dB | 33.84 dB | 20.34 dB
4115 2DE4 | w[] || 30.982 dB | 30.79 dB | 30.25 dB | 23.49 dB
5|15 2980 | w(] || 41.279 dB | 38.89 dB | 35.33 dB | 22.56 dB
6|15 2980 | w[] || 40.100 dB | 39.11 dB | 36.26 dB | 25.33 dB

ITII. DorPPLER TOLERANT FILTERS
We will first search for sequences s[-] with large Psw(Eman)-

values and then design receiver filters w|] of length N = 3L
with optimized Doppler performance. To simplify the search
in the first step, the ambiguity function is expressed as

|Asw[m, §]|2:Z Zs[n]s[l] wln + mlw(l + m] cos(2né(n — 1))
n !

R Clulm] = 4n°€® (CQRmIC,wlm] ~ (CEm))?)

where we approximated cos(z) ~ 1 — z2/2 (Jz] < 0.1 yields
less than 5% error) and where C{) [m]=3" sln]w[n + m]nt.
Since this is a quadratic equation in ¢, only the cases £=0and
§ = &max must be considered. Moreover, this approximation
leads to an efficient criterion that allows an exhaustive search
up to lengths L=a40.

In the second step, we determined Doppler tolerant filters
W[n] by adding constraints on | Zns[n] W[n+m] cos(2mEmazn)|
and |} s[n]wn + m] Sin(27€maan)|, or on |Cs(.1u~))(m)[ Both
approaches result in a reduced degradation of Psw(Emaa) With
increasing &maz. For &maz = 5-1073, the improvement of
psw(§maz) may exceed 3dB (compare #5 with #6). Nev-
ertheless, the complete degradation of the psw(émaz) caused
by Doppler frequency shifts cannot be compensated by mis-
matched filters.
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Abstract — Welch’s lower bounds on total peri-
odic and odd correlation energy of an equi-energy set
of sequences are presented. It is shown that both
bounds are simultaneously achieved precisely when
the sequence set forms an aperiodic complementary
sequence set, which has been extensively studied and
is of independent interests. Then a lower bound
closely related to an approximate SNR formula of
Pursley for asynchronous DS/SSMA is derived. Our
results are an extension of the works of Massey and
Mittelholzer for synchronous DS/SSMA.

I. INTRODUCTION

In spite of the fact that the existing theory of sequence de-
sign concerns mainly with the maximum periodic correlation
magnitude, it is well-known that the inter-sequence aperiodic
cross-correlation energy (i.e. between any two users) are more
interesting than the maximum periodic (or even aperiodic)
cross-correlation magnitude from the pragmatic viewpoint be-
cause they determine the average SNR of an asynchronous
DS/SSMA system under proper assumptions [6],[7].

In order to maximize the average SNR of an asynchronous
DS/SSMA system by proper choice of signature sequences,
sets of binary sequences are typically numerically optimized
with respect to the average interference parameter (AIP),
which can be accurately approximated by the total aperiodic
cross-correlation energy (i.e. sum over all pairs of distinct se-
quences). In the last two decades, many numerical results
about binary sequences with optimized AIP were reported
(c.f. [2] and the references therein).

Welch’s bound is essentially a lower bound on the total-
even-moment of inner products of any set of equi-energy se-
quences, though it is usually formulated as a bound on max-
imum inner-product magnitude. Recently, Massey [3] iden-
tified the necessary and sufficient condition for a sequence
set to meet Welch’s bound on the total inner-product en-
ergy. This result was subsequently elaborated by Massey
and Mittetholzer [4] for application in synchronous DS/SSMA
systems. In particular, the uniformly good property of the
Welch-Bound-Equality (WBE) sequence sets guarantees that
all inter-sequence inner-product energy of such sequence sets
simultaneously achieve the same value. This property means
that the use of WBE sequence set as the signature sequences
for a synchronous DS/SSMA system results in the minimum
worse-case interuser interference variance, and is very desir-
able from an application viewpoint.

II. MAIN RESULTS
This work is an extension of the results of [3] and [4] to
asynchronous DS/SSMA systems, which are considered to be
more practical due to the removal of the assumption of ideal
sequence synchronization. The following theorems state our
main results.

1This work was supported by the Croucher Foundation Fellow-
ship 1994/95.

Let X be an equi-energy set of K complex-valued sequences
of length L.

Theorem 1 (Welch’s bound on total periodic correlation en-
ergy) Let Xs be the sequence set obtained by including all cycli-
cally shifted versions of every sequence in X. Then the total
inner-product energy of Xs is at least K*L®, with equality if
and only if X is a periodic complementary sequence set.

Theorem 2 (Welch’s bound on total odd correlation energy)
Let X5 be the sequence set obtained by including all negacycli-
cally shifted versions of every sequence in X. Then the total
inner-product energy of X is at least K2L3, with equality if
and only if X is o odd complementary sequence set.

Theorem 3 (Bound for asynchronous DS/SSMA) Let C; ;(t)
denote the aperiodic cross-correlation at phase shift t between
the ith and jth sequences in X. Then

K—-1 L-1 L-1
max 0y Y (G @F + D GO p > (K-DL,
=7 ‘:;q t=1-L ¢=t;é3L

i#Fg

with equality if and only if the sequence set forms an aperiodic
complementary sequence set.

Theorem 3 is closely related to the approximate SNR for-
mula of Pursley[6] for asynchronous DS/SSMA. Preliminary
forms of Theorems 1 and 2 were presented in [5]. A discus-
sion on binary linear cyclic codes that almost achieve Welch’s
bound on total periodic correlation energy can be found in [1].
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New Signal Design Method by Coded Addition of Sequences
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Abstract —

A method of “coded addition of sequences” is pro-
posed for the signal design with many codewords for
synchronous or approximately synchronized CDMA
systems.

I. CODED ADDITION OF SEQUENCES
The method can be explained using small examples.

We can obtain a 4-phase good code of wordlength 2
[(lyj)1 (1: -j)) (J: 1); (_j: 1)7 (_11 "j)v (_l)j)) ("'jy _1))(j> —1)]
Then, from orthogonal vectors

11
1 1

1
-1

X1=(
x;:(

-1 )

1),
we can obtain eight vectors by “coded addition” of vectors
with above 4-phase code as follows:

X1+jx2 =( 145 145 1-j =143
Xp=Jx2 =( 1-j 1-j 14j -1-3j)
Jxi+xe =( 145 14j =147 1-j7)
—JiX1 + x2 =( 1-j 1-j ~-1-7 1+.7) (1)
-X1=Jxg =( -1-j -1-j =14j 1-j)
-xitgxe =( =145 -14j5 -1-j 14j)
—iX1=x3 =( -1-j -1-j 1-j -14j)
jxl—x2 :( —1+] —1+] 1+] —1—j)

The Euclid distance between any two of these vectors is always
4, except for the case of the two vectors are inverse each other.
Farthermore, all of these vectors are orthogonal to both of

1 1 1)
-1 1 1)

Above method of “coded addition of vectors” also can be
used to the row vectors in the IDFT matrix in following for-
mula of the method of signal making for approximately syn-
chronized CDMAJ1]. Because (1 j) is also an orthogonal se-
quence, a formula

-1
1

Xa:(
X4=(

0 00 0 0 0 0 0 0

1 1 j —j -1 =1 —j 4 o

4]0 0 0 0 0 0 0 0 1

V3F; 0 00 0 0 0 0 0 0

i =i 1 1 = j -1 -1 o0

0 00 0 0 0 0 0 j
’(1)3 w?l w3 w2l wls ,w9 ,w15 w9 w3
wl 'll)7 wIS w19 w13 ,w19 wl ’U)7 w5
,wll wS ,wll w5 w23 wl’l ,w23 wl7 ,w19
-— w9 w15 w?l w3 wil ,w3 ,w9 wlS w2l
,wl9 wl(i ,wl9 wxa w7 »,wl ,w7 wl ,wll
wl7 w23 ws wll ,ws wll ,w17 w23 le

prepares eight polyphase codewords for a user, where w
exp (45%). In this case, the user 1 can be assigned 8 pseudo-
periodic sequences of length 6 4 2L:

1 1 ] 1 1 i 1 1
[xu X12 X13 X34 X35 X16 X17 xlé]y

[xll X12 X13 X14 X315 X16 X17 X138 X21 X22 X23

where

3 1

x!; = [w” v w W w® w7 ]’
when L = 1.

The Euclid distance between any two among [X1; ...x13s]
is the same except for the case that these two are inverse
each other. On the other hand, the crosscorrelation function

between x;; and x3; is 0 for -1, 0 and 1 shift terms.

II. Discussion

For a synchronous CDMA system, a signal design without
co-channel interference is realized by using rows of a unitary
matrix. For an approximately synchronized CDMA system,
a signal design without co-channel interference is also real-
ized by using the pseudo-periodic sequences proposed by the
author[1].

However, in real system, the information transmission rate
and the number of users, which can use the system in the
same time, are important. So, a user should be assigned many
signals, each of which are without co-channel interference to
the signals of other users, so that the user can use the assigned
signals as codewords.

In this paper, a method of “coded addition of sequences”
was proposed for the signal design with many codewords for
synchronous or approximately synchronized CDMA systems.
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00 0 0 0 0 O
00 0 0 0 0 0
1 j -j -1 -1 —j
00 0 0 0 0 0
00 0 0 0 0 0
-5 1 1 —j j -1 -1
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Abstract — An upper bound for a hybrid exponen-
tial sum over Galois rings is derived. This bound is
then used to obtain an upper bound for the maximum
aperiodic correlation of some recently constructed
weighted degree sequence families over Galois Rings.
The bound is of the order of \/flogL where L is the
period of the sequences.

I. INTRODUCTION

For a fixed prime p and integers e,m, e > 2, m > 1, let
R.,n denote the Galois Ring of characteristic p® and contain-
ing p°™ elements. Let 1. m be a non-trivial additive charac-
ter of Rem and let f(z) € Rem([z] be non-degenerate with
weighted degree Dy [1]. Define Te,m = Totm U 0 where 7',
is a cyclic subgroup of R}, of order p™ — 1. In [1], Kumar
et al. prove

D Yem(f(2))| < (D5 —)VP™ )

z2€ETe,m
Consider the set Sp of sequences defined via
Sp = {{Te;m(f(B")}tez | Dy < D}
where 3 is a generator of 7.',,. Let the set
Fp CSp

consist of a maximal family of pairwise, cyclically distinct se-
quences in Sp with each sequence having period 2™ —1. Using
(1), it is easy to see that the maximum non-trivial correlation
Craz of the family Fp has the upper bound

Crmaz <14 (D — 1)4/p™.

The family Fp compares very well with existing sequence
families when Cpnez, alphabet size and family size are used
as a basis for comparison. In this paper, we obtain an upper
bound to the maximum aperiodic correlation of the family Fp.
The aperiodic correlation is often more relevant than periodic
correlation in CDMA applications.

Il. BOUND ON A HYBRID EXPONENTIAL SUM
Let f(z) € Rem[z] have weighted degree Dys. Let xe,m
be an arbitrary multiplicative character with order dividing
p™ — 1. Using L-function techniques, we can express the hy-
brid exponential sum Eme’i;,m Ye,m(f(z))x(z) as a sum of
Dy complex numbers. These complex numbers can be shown

1The work was supported in part by the National Science Foun-
dation under Grant Number NCR-93-05017 and in part by the Nor-
wegian Research Council for Science and the Humanities.
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to be the reciprocal roots of the zeta function of a function
field over Fpm. It follows from the Riemann Hypothesis for
function fields, that the magnitude of each of these complex

numbers is 1/p™. Thus, we have
Theorem 1

D" bem(f(@))xem(®)| < Dyv/Pm

men,m

III. BOUND ON APERIODIC CORRELATION

The aperiodic correlation 8;2(7) between any two p®-ary
sequences 31(t) and sz(t) of period N, is defined via

min{N—-1,N—-1—7}
Z wsl(t+7)"52(t)’ w = ezp(iz?f/Pe)'

t=maz{0,—7}

01,2 (T) =

The computation of the aperiodic correlation distribu-
tion 8;j(r), 1 < 7 < N, of Fp reduces to ob-
taining the distribution of the exponential sum values
{Cn LNty (£(Y) | Dy < DY,

Using Theorem 1, and using similar techniques as in [2]
(see also [4], [3]), we can bound the maximum non-trivial

aperiodic correlation 8,4, of Fp as under
heorem 2

Iemazl < D\/ﬁ;(ln (pm) + 1)
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Abstract — A new method for designing signals with
a given time-bandwidth product is introduced. These
signals in the set have a flat amplitude spectrum and
have low cross-correlation function values and lie on
a signal parameter space ellipse. Upper bounds for
the cross-correlation between signals in the set is de-
rived.

I. INTRODUCTION
There are many applications where there is a need for syn-

thesizing signal sets which have low values of cross-correlation
at all lags and low values of autocorrelation at nonzero lags.
While prolate spheroidal functions are “essentially” time and
band-limited, and are orthogonal, the cross-correlation be-
tween the signals is not zero for all lags [1]. In an asynchronous
system with no cooperation among users/targets, uniformly
low cross-correlation values between signals are important. In
an imaging context, using signals whose spectrum is broad
enough to cover the nulls in the backscattering spectrum of
targets ensures reasonable signal to noise ratio [2].

I1. DESIGN CONSTRAINTS
Let S = {s1(t), s2(¢), ...,sn(%)} be a set of complex envelopes

of signals which are L>(=L, Z) with a corresponding set of
Fourier transforms § = {S1(f), S2(f),...,S~n(f)}. The design
specifications are as follows:

Condition 1:
%
/ |si(t) Pdt=1; i=1,..,N 1)

T

2

Condition 2: For some k > 0 and for all 7 < T
| Rij(T)|<®k; 4,j=1,.,N; i#7 (2)

where the cross-correlation R; ;(r) between signals s;(¢) and
8;(t) is defined as

+T
Rij(r) = / si(t)sj(t —r)dt; T<T
-7
Condition 3: Fori1 = 1,2,...,N
; w
| S(f) |= { o Ew @)

where o is a constant and a2(f) is positive function. Let
o) = 721—W — 6, and a2(f) = 62, where 81, 62 > 0 are very

small, such that f_WW | Si(f) |* ¢f = 1 —e. The signals are
“essentially” band-limited with the amplitude of the Fourier
transform as specified.

Since the area under the squared magnitude of the cross-
correlation function is fixed because of (3), it can be reasoned
that the cross-correlation function should be a constant func-
tion with a support [—T, T to achieve uniformly low values of
cross-correlation.
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I1I. SOLUTION TO THE DESIGN PROBLEM
It has been shown heuristically that for signals with quadratic

phase functions in the time and frequency domains the shape
of the complex envelopes will be rectangular [3]. Let

Si(f) =| Si(f) | eI oo 4)

By selecting the quadratic coefficients carefully we can also
ensure that the difference between the phase functions of two
signals, which determines the cross-correlation property, is
quadratic. To arrive at a rule to pick the quadratic coeffi-
cients the usual definitions of the rms duration 4 and rms
bandwidth 8 are used [3]. Using these definitions, it can be
shown that the quadratic coefficients lie on an ellipse, i.e.,

a? b?
@yt ! ©

IV. UrPPER BouND FOR CROSS-CORRELATION
Let the real and imaginary parts of a Fresnel integral be

C(z) = fozcos(”T‘z)dt and S(z) = foxsin("T‘:)dt. R;; is
a continuous function of r, Aa, Ab and Ac, where Aa =
ai — aj; Ab = b; — bj; Ac = ¢; — ¢j. Since R;;(7) is
a continuous function so is | Ri;(r) |. This means that
max.-<7 | Ri;(r) | exists and is finite.

Theorem: max| i<t | Ri;(7) |< 2.3(2—1W, /55=)
Proof:
1

| Bi5(r) |= 35/ 50 [C(21) 455 (21)=C(w0) =i S(20)] (6)
where

21 = \/ 755 (277 4+ Ab) + WAa) and zo = /2= ({277 +
Ab) - WAa) maXg, z, €~ 00,4 00) [| C(zl) - C(IEQ) |] S 1.6.

Also, MaXgy g, (—oo,400)[] S(21) — S(z0) |] < 1.6. Thus

| C(21) 4+ 3S(z1) — C(z0) — jS(z0) |< 2.3

Corollary: For a given duration and bandwidth for the signal
set, the cross-correlation between two signals that are furthest
apart along the semi-minor azis, in the set is bounded by 7?1‘W

It can be shown that it is possible to trade-off the num-
ber of signals on the signal parameter ellipse for better cross-
correlation properties between signals in the set.

REFERENCES

[1] D. Slepian and H.O. Pollack, “Prolate spherodial wave func-
tions, Fourier analysis, and uncertainty-I,” Bell Syst. Tech. J.,
40, 43-63 (1961)

[2] J.S. Jaffe, E. Reuss, D. McGehee, and G. Chandran, “FTV, a
Sonar for Tracking Macrozooplankton in 3-dimensions,” to be
published in Deep Sea Research

[3] A.W. Rihaczek, “Principles of High-Resolution Radar,” Cali-
fornia: Peninsula, 1985

93




ON GROBNER BASES OF THE ERROR-LOCATOR IDEAL OF HERMITIAN CODES

Xuemin Chen, I. S. Reed and T. Helleseth*

1. ERROR-LOCATOR IDEALS FOR HERMITIAN CODES

Consider error-correcting codes constructed from an affine ver-
sion of the Hermitian curve. Let K = GF(g) and let m =
V@ + 1 be an integer. In this case the affine version of the Her-
mitian curve, C(z,y) = = + ™! — y™, is irreducible, regu-
lar, and has exactly n = g¢,/g rational points, given by P, =
{(z1,91), (z2,92)s eeeeee y(n,yn)}. The genus g of this curve is given
by g = (m — 1)(m — 2)/2. The total degree ordering(TDO) <¢ of
the pairs (a,b) of the positive integers is chosen as follows :

(0,0) <¢ (1,0) <¢ (0,1) <¢ (2,0) <& (1,1) <t (0,2) <t -« -

In the TDO let j be a positive integer such that m -2 < j < L"T“IJ
and let ¢o(z,y), #1(z,¥),-..,¢u(z,y) denote the monomials z9yb for
(a,5) <¢ (0,7). The Hermitian code C is then defined by its parity
check matrix H :

goé-’vl,yl; go?fmyn{

L1, Zny,Yn

H= 1 l Yi 1 A Yy (1)
¢u(-’£’1,y1) ¢u(37m‘!ln)

The dimension and the designed distance of the code C satisfy k =
n—(mj—g+1)and d* = mj — 2g + 2 < d, respectively, where d
denotes the true minimum distance of the code C.

In the decoding situation a received word r is the sum of a code-
word ¢ and an error vector e. The syndrome vector s is com-
puted as usual by 5 = rHT. Assume that v = wt(e) < t, where
t = |(d — 1)/2]. Also, assume that an error which occurs in the
i-th coordinate of r is denoted by e;(# 0). Then the error-location
set of e is defined by EPzy = {(zi,yi) : ¢ € Zn and e; # 0},
where Zn = {i : 1 < ¢ < n}. It follows from (1) that s, =
Eieze e;a:?y? for a + b < j are the known syndromes for the er-
rors of the Hermitian code C, where Ze = {i : ¢ € Z, and ¢; # 0} is
called the error-location index set. The decoding problem is to use
these syndromes s,p to determine the v(< t) error positions (z;,y;)
and the corresponding error values e; for ¢ € Z,.

Usually, the determination of the error positions is based on the
observation that if any polynomial, f(z,y) = Zv+w5h Fowz?y¥,
has the same error positions as the received word among its zeros,
then Zv+w<h fow8atv,b+w = 0. This implies that the procedure
for determining the error positions is independent of the method
needed to find the error values. The error-locator ideal of e is defined
next.

Definition 1 The polynomial ideal,

Ie(z,y) = {f(z,v) € K[z,y]: f(zi,y:) =0 for all i € Z.},

is called the error-locator ideal of the error vectore.

2. DETERMINING GROBNER BASES OF THE ERROR-
LOCATOR IDEAL

For brevity, define the following polynomials :

fab = EleY1b+E2X;Y2b+ "'+E')X3va_ Saby (2)
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ki = o(X;,Y;), (3)
hj=X?=X;, by =Y} =Y), b =B -1, (4)

over the set of variables X;,Y;,E; for 1 < 7 < v. For a received
word r = ¢ + e with v = wt(e) < ¢, the problem of decoding
Hermitian codes is equivalent to solving for the common zeros of the
following set of multivariate non-linear equations : fqp =0 for a +
b < j, and the equations, h; = 0, l1; = 0, lz; = 0, I3; = 0 for
i=12,..,v.

Consider the polynomial ring K[Xi,Y1, E1, ..., Xv,Ys,Ey] and
the following set of polynomials : F' = F; UF, UF;, where the sets
F; are givenby F1 = {fap:a+b <}, F2={h;:1<j< v} and
F3 ={li; :1<i<v1<j < v} with the polynomials f,p, h; and
li; being defined by (2),(3) and (4), respectively. Thus, the problem
of decoding Hermitian codes is equivalent to a determination of the
variety V(F) or its equivalent V(I(F')). The key observation is the
following relation between the ideal I(F') and the error-locator ideals
Ie(X;,Y;) :

Theorem 1 I{(F)Nn K{X;,Y;] C le(X;,Y;) for 3 =1,2,...,v, and
V(Ile(X;,Y;)) = V(I(F) NK{X;,Y;]) for 7 =1,2,..,v.

In order to solve for the error-locations from the error-locator
ideal Ie(X;,Y;), one needs to determine a set of generators for this
ideal. First, define the projection sets EP; = {o : (o, 8) € EPzy}
and EPy = {8 : («,8) € EPzy}. Next, define the “purely lex-
icographical” (PLEX) ordering of the m-tuples (a1,a2,...,am) as
follows : (0,0,...,0) <p (1,0,...,0) <p (2,0,..,0) <p --- <p
0,1,..,0) <p (0,2,...,0) <p ---. Theorem 1 implies the follow-
ing important theorem for the normalized reduced Grébner ba-
sis(NRGB) of I(F) :

Theorem 2 Let Gp be the NRGB of I(F) w.r.t. PLEX order-
ing ezponents of the monomials Xf‘1@“2Ef"...X3’"'°Yvas"'l ESsv,
Then GP n K[X],Y1] = {92(X1,Y1),g1 (Xl)} and V(GP n
K|[X1,Y1]) = EPyy, where g2(z,y) € Klz,vy] and g1(z) € Kl[z].

The above theorems provide an approach for producing from I{F') a
minimal set of generators for the ideal I(F)N K[X